首页> 外国专利> Coating a substrate surface using a plasma beam or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to respective plasma coating nozzle in opposition to thermal injection

Coating a substrate surface using a plasma beam or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to respective plasma coating nozzle in opposition to thermal injection

机译:使用等离子束或多个等离子束来涂覆衬底表面,包括根据与热注入相反的相应的等离子涂覆喷嘴将大气低温等离子体束引导到衬底表面。

摘要

The method for coating a substrate surface (4) using a plasma beam (2) or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to a respective plasma coating nozzle in opposition to thermal injection, and feeding the beam of the atmospheric low-temperature plasma to a homogeneous coating liquid consisting of carrier liquid and fine-grained powder or a liquid mixture with solid portions in dosed quantity for the coating using a pump- or a dosing system via a homogenization container with a homogenization system. The method for coating a substrate surface (4) using a plasma beam (2) or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to a respective plasma coating nozzle in opposition to thermal injection, and feeding the beam of the atmospheric low-temperature plasma to a homogeneous coating liquid consisting of carrier liquid and fine-grained powder or a liquid mixture with solid portions in dosed quantity for the coating using a pump- or a dosing system via a homogenization container with a homogenization system, where the solid portions from the coating liquid receives an adhesive bond with the substrate surface. The coating of the substrate surface statistically or dynamically takes place by moving a plasma generator (1) with the plasma beam over the substrate surface or by moving the substrate surface into the plasma beam. During and after the statistical coating process, the substrate temperature raise is below 900[deg] C at a distance of 5-20 mm between the plasma-coating nozzle and the substrate surface. During and after the dynamical coating process, the substrate temperature raise is below 100[deg] C at a distance of 5-20 mm between the plasma-coating nozzle and the substrate surface and a feed rate of plasma beam or substrate surface with 1-10 meter per minute. The grain size of the solid portions or the admixed fine-grained powder or the powder mixture in the coating liquid is 1-100 nanometers. The plasma develops in a plasma nozzle under supplying a working gas and/or an evaporatable liquid and generating a discharge through the high voltage or electrical and/or electromagnetic coupling. The primary plasma is blown out to the substrate surface through a nozzle shaped opening (3) of the plasma generator, where the coating liquid is directly introduced as fine particles into the secondary plasma beam outflowing to the nozzle opening using a flat spray nozzle. The coating liquid within the nozzle is entered into an area of the plasma nozzle tapering itself to the nozzle opening. The coating liquid is entered into the primary plasma through an internal electrode. Air or nitrogen is used as working gas (7) or plasma gas. The low-temperature plasma is accelerated to the directed primary plasma beam at the transition to the ambient using the plasma nozzle after the formation of an electrically or electromagnetically generated primary non-equilibrium plasma in a partially closed plasma generator and consequently forms the secondary plasma at ambient pressure according to the nozzle. The substrate surface is cleaned and/or micro-structured or nano-structured by the secondary plasma beam without supplying the coating liquid. For generating the primary plasma, a high-frequency alternating current or direct current is used with a frequency of 10 kHz to 10 GHz and an electric power of less than 5 kW.
机译:使用等离子束(2)或等离子束涂覆衬底表面(4)的方法,包括:与相应的热注入相反,根据各自的等离子涂覆喷嘴将大气低温等离子体束引导到衬底表面;以及使用泵或定量给料系统通过均质容器将大气低温等离子束送入均质涂料液中,该均质涂料液由载液和细粉或具有固体成分的定量混合液组成均质系统。使用等离子束(2)或等离子束涂覆衬底表面(4)的方法,包括:与相应的热注入相反,根据各自的等离子涂覆喷嘴将大气低温等离子体束引导到衬底表面;以及使用泵或定量给料系统通过均质容器将大气低温等离子束送入均质涂料液中,该均质涂料液由载液和细粉或具有固体成分的定量混合液组成均质化系统,其中来自涂布液的固体部分与基材表面发生粘合。通过用等离子体束在衬底表面上移动等离子发生器(1)或通过将衬底表面移动到等离子束中,统计地或动态地进行衬底表面的涂覆。在统计涂覆过程期间和之后,在等离子体涂覆喷嘴和衬底表面之间的5-20mm的距离处衬底温度升高低于900℃。在动态涂覆过程中和之后,在等离子涂覆喷嘴和衬底表面之间的距离为5-20 mm时,衬底温度升高低于100℃,等离子束或衬底表面的进给速度为1-每分钟10米。涂布液中的固体部分或混合的细粒粉末或粉末混合物的粒度为1-100纳米。在提供工作气体和/或可蒸发液体并通过高压或电和/或电磁耦合产生放电的条件下,等离子体在等离子体喷嘴中形成。初级等离子体通过等离子发生器的喷嘴形开口(3)吹出到基板表面,在此处,涂布液以细颗粒的形式直接引入次级等离子束中,而次级等离子束则使用扁平喷嘴流出。喷嘴内的涂料液进入等离子喷嘴自身逐渐向喷嘴开口倾斜的区域。涂布液通过内部电极进入初级等离子体。空气或氮气用作工作气体(7)或等离子气体。在部分封闭的等离子发生器中形成电或电磁产生的主要非平衡等离子体之后,在使用等离子体喷嘴过渡到周围环境的过程中,将低温等离子加速为定向的主要等离子束,从而在根据喷嘴的环境压力。在不供应涂布液的情况下,通过次级等离子体束清洁和/或微结构化或纳米结构化衬底表面。为了产生初级等离子体,使用高频交流电或直流电,该交流电或直流电的频率为10 kHz至10 GHz,并且电力小于5 kW。

著录项

  • 公开/公告号DE102010014552A1

    专利类型

  • 公开/公告日2011-09-22

    原文格式PDF

  • 申请/专利权人 BRUMMER TIMO;

    申请/专利号DE20101014552

  • 发明设计人 BRUMMER TIMO;

    申请日2010-04-10

  • 分类号C23C4/12;H01J37/32;

  • 国家 DE

  • 入库时间 2022-08-21 17:47:20

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号