首页> 外文会议>2002 ASME International Mechanical Engineering Congress and Exposition , Nov 17-22, 2002, New Orleans, Louisiana >Electrically Controllable Deformations In Ionic Polymer Metal Composite Actuators
【24h】

Electrically Controllable Deformations In Ionic Polymer Metal Composite Actuators

机译:离子聚合物金属复合致动器中的电可控变形

获取原文
获取原文并翻译 | 示例

摘要

Ionic polymer metal composites (IPMC's) exhibit spectacular coupling between electrical and mechanical domains. Sensing and actuation properties of these materials and the force and displacement characteristics have been investigated as a means of determining the electromechanical coupling coefficients of the material. An electric field applied across the thickness of the polymer causes electrophoretic ionic migration within the material. Electro-osmotic drag induces solvent migration in addition to the ion motion, and a stress is generated within the material causing the material to deform. This phenomenon is also reversible, making it possible to use ionic polymer materials as sensors, transducers and power generators. The salient feature of ionic polymeric materials, as compared to other electromechanical transducers such as piezoelectrics, is the large deformations that are achievable with low electric fields. Cantilever samples of ionic polymer material exhibit tip displacements on the order of their length with applied electric fields of the order of 10 volts per mm. Recent measurements of the motion of cantilever samples of ionic polymers have demonstrated a controllable, repeatable deformation in which the zero force position of the ionic polymer changes depending on the amplitude of the applied electric field. This effect appears to be controllable in the sense that the change in the zero force position of the polymer is a function of the amplitude of the applied electric field. It is also reversible to a degree because a step change in the voltage with the opposite polarity will change the shape of the ionic polymer strip back to a position that is close to the original position before cycling of the material. Thus, there is a potential to use this effect as a deformation memory mechanism within the polymer material. These observations and subsequent interpretations are reported in this presentation.
机译:离子聚合物金属复合材料(IPMC)在电气和机械领域之间表现出惊人的耦合。已经研究了这些材料的感测和致动特性以及力和位移特性,作为确定材料的机电耦合系数的一种方法。跨聚合物厚度施加的电场会导致材料内的电泳离子迁移。除离子运动外,电渗阻力还引起溶剂迁移,并且在材料内产生应力,导致材料变形。这种现象也是可逆的,从而有可能将离子聚合物材料用作传感器,换能器和发电机。与其他机电换能器(如压电)相比,离子聚合材料的显着特征是在低电场下可实现的大变形。离子聚合物材料的悬臂样品在施加的电场强度为10伏/毫米的情况下,其尖端位移的长度约为其长度。离子聚合物悬臂样品运动的最新测量结果表明,可控,可重复的变形是其中离子聚合物的零力位置根据所施加电场的幅度而变化的。从聚合物的零力位置的变化是所施加电场的幅度的函数的意义上看,这种效果是可控的。这也是可逆的,因为具有相反极性的电压的阶跃变化将使离子聚合物条的形状变回接近材料循环之前的原始位置的位置。因此,有可能将该效应用作聚合物材料内的变形记忆机制。这些观察和随后的解释在本报告中进行了报道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号