首页> 外文会议>2002 international conference on noise and vibration engineering (ISMA2002) >Experimental insight on an updating method with application on non–conventional wing structure
【24h】

Experimental insight on an updating method with application on non–conventional wing structure

机译:在非常规机翼结构上应用更新方法的实验见解

获取原文
获取原文并翻译 | 示例

摘要

In the prediction of the dynamic behaviour of mechanical structures, the updating of the numerical model is arncrucial point for industrials. Indeed, structural updating allows one to tune the numerical model to the experimentalrndynamic data leading first to the identification of missmodelled regions, and then to a new numericalrnmodel more representative of the experimental “real” structure with respect to the initial one. Several updatingrnmethods are available in literature most of them are classifiable as iterative sensitivity methods: thernidentification of missmodelled regions is obtained building a sensitivity function to structural parameters to bernupdated, and then performing an iterative procedure until convergence of the values of the updating parametersrnis reached. This paper is focused on the actual capability of the Predictor–Corrector sensitivity method tornperform structural updating by means of experimental data. The main characteristic of this method is that itrnconsiders the sensitivity of two correlation functions, evaluated by the knowledge of the frequency responsernfunction of the structure: this feature is very important since the updating procedure is based only on datarndirectly achievable from experimental tests, avoiding then numerical approximations introduced by data handlingrnrequired to identify eigenfrequencies and eigenmodes of the test structure. Moreover the effectiveness ofrnan enhancement of the Predictor-Corrector method aimed to reduce the updating parameters to be used in therniterative procedure is tested with experimental data. The experimental analyses have been carried out both on arncantilever beam and on a non–conventional aircraft wing structure with the innovative, but not so much, box–rnwing design. The experimental setup was formed by a Dynamic Signal Analyzer, and Transfer and Controlrnfrom DIFA Measurement System, while the experimental data processing was obtained with LMS CADA-PC.rnThe Finite Element models represent the numerical description of such structural components: the updatingrncapabilities are investigated for different levels of structural modification experimentally obtained by changesrnin stiffness properties of the test articles.
机译:在预测机械结构的动态行为时,数值模型的更新是工业的重点。确实,结构更新使人们可以将数值模型调整到实验动力学数据,从而首先识别出模型不正确的区域,然后生成一个新的数值模型,相对于初始模型,该模型更能代表实验“真实”结构。文献中提供了几种更新方法,其中大多数可归类为迭代敏感性方法:通过建立对要更新的结构参数的敏感性函数,获得对模型不正确区域的识别,然后执行迭代过程,直到达到更新参数rnis的值收敛为止。本文着重于Predictor–Corrector灵敏度方法通过实验数据进行结构更新的实际能力。该方法的主要特点是考虑了两个相关函数的灵敏度,并通过结构的频率响应函数的知识对其进行了评估:此功能非常重要,因为更新过程仅基于实验测试可直接获得的数据,因此避免了数值计算需要使用数据处理引入的近似值来识别测试结构的本征频率和本征模。此外,还通过实验数据测试了减少预测程序中要使用的更新参数的Predictor-Corrector方法的增强效果。实验分析是在具有悬臂梁和非常规飞机机翼结构上进行的,具有创新性,但不是那么多的箱形机翼设计。实验装置由动态信号分析仪,DIFA测量系统的传输和控制装置组成,而实验数据通过LMS CADA-PC获得。有限元模型代表了此类结构部件的数值描述:研究了其更新能力通过改变测试制品的刚度特性实验获得不同水平的结构改性。

著录项

  • 来源
  • 会议地点 Leuven(BE);Leuven(BE)
  • 作者单位

    Aerospace and Astronautics Engineering Department,University of Rome “La Sapienza” - Via Eudossiana, 16 – 00184 Rome, Italy e-mail: luigi.baliscrema@uniroma1.it;

    Aerospace and Astronautics Engineering Department,University of Rome “La Sapienza” - Via Eudossiana, 16 – 00184 Rome, Italy;

    Aerospace and Astronautics Engineering Department,University of Rome “La Sapienza” - Via Eudossiana, 16 – 00184 Rome, Italy;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 振动、噪声及其控制;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号