首页> 外文会议>International Conference on Noise and Vibration Engineering >Experimental insight on an updating method with application on non-conventional wing structure
【24h】

Experimental insight on an updating method with application on non-conventional wing structure

机译:对非传统机翼结构应用更新方法的实验洞察

获取原文

摘要

In the prediction of the dynamic behaviour of mechanical structures, the updating of the numerical model is a crucial point for industrials. Indeed, structural updating allows one to tune the numerical model to the experimental dynamic data leading first to the identification of missmodelled regions, and then to a new numerical model more representative of the experimental "real" structure with respect to the initial one. Several updating methods are available in literature most of them are classifiable as iterative sensitivity methods: the identification of missmodelled regions is obtained building a sensitivity function to structural parameters to be updated, and then performing an iterative procedure until convergence of the values of the updating parameters is reached. This paper is focused on the actual capability of the Predictor-Corrector sensitivity method to perform structural updating by means of experimental data. The main characteristic of this method is that it considers the sensitivity of two correlation functions, evaluated by the knowledge of the frequency response function of the structure: this feature is very important since the updating procedure is based only on data directly achievable from experimental tests, avoiding then numerical approximations introduced by data handling required to identify eigenfrequencies and eigenmodes of the test structure. Moreover the effectiveness of an enhancement of the Predictor-Corrector method aimed to reduce the updating parameters to be used in the iterative procedure is tested with experimental data. The experimental analyses have been carried out both on a cantilever beam and on a non-conventional aircraft wing structure with the innovative, but not so much, box-wing design. The experimental setup was formed by a Dynamic Signal Analyzer, and Transfer and Control from DIFA Measurement System, while the experimental data processing was obtained with LMS CADA-PC. The Finite Element models represent the numerical description of such structural components: the updating capabilities are investigated for different levels of structural modification experimentally obtained by changes in stiffness properties of the test articles.
机译:在预测机械结构的动态行为中,数值模型的更新是工业的关键点。实际上,结构更新允许一个人将数值模型调整到先前阳极区域的识别的实验动态数据,然后进入关于初始初始的实验“真实”结构的新数值模型。文学中有多种更新方法是迭代灵敏度方法的大多数可分类:获得错过的区域的识别,将识别函数建立到要更新的结构参数,然后执行迭代过程,直到更新参数的值的收敛到达了。本文专注于预测校正器灵敏度方法的实际能力,通过实验数据进行结构更新。该方法的主要特征是考虑了通过结构的频率响应函数的知识评估的两个相关函数的灵敏度:此功能非常重要,因为更新过程仅基于直接从实验测试中实现的数据,然后避免通过数据处理引入的数值近似来识别测试结构的特征频率和特征模。此外,通过实验数据测试旨在减少迭代过程中使用更新参数的预测器校正方法的有效性是用实验数据测试的。实验分析已经在悬臂梁和非传统飞机机翼结构上进行,具有创新,但不是那么多,箱翼设计。实验设置由动态信号分析仪形成,并从Difa测量系统转移和控制,而使用LMS CADA-PC获得实验数据处理。有限元模型代表这种结构部件的数值描述:通过试验制品的刚度特性的变化来研究进行不同水平的结构修饰水平的较新能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号