首页> 外文会议>2003 International Symposium on Compound Semiconductors Aug 25-27, 2003 San Diego, CA >Ion implanted InP and InGaAs for ultrafast optoelectronic applications
【24h】

Ion implanted InP and InGaAs for ultrafast optoelectronic applications

机译:离子注入的InP和InGaAs用于超快光电应用

获取原文
获取原文并翻译 | 示例

摘要

Low-temperature (LT) GaAs exhibits properties nearly ideal for ultrafast optoelectronic applications, namely, subpicosecond optical response time, high resistivity and good mobility. In this material, ionized As antisite defects act as the main electron traps and recombination centers. InP and especially In_(0.53)Ga_(0.47)As with similar material properties would have an added interest from the point of view of optical fiber communications technology because of their smaller, compared to GaAs, band gaps. However, As antisites in InGaAs create shallow donors and, together with other intrinsic defects, such as As vacancy - group Ⅲ interstitial complexes, prevent fabrication of highly-resistive InGaAs layers by the LT growth. LT InP is also conductive (n-type), because the ionized level of the phosphorus antisite defect lies in the conduction band. Thus, even though the LT growth allows obtaining InP and InGaAs layers with short electron lifetimes, these layers are hardly applicable for ultrafast optoelectronic devices because of the low resistivity. Therefore, to produce layers with ultrashort carrier lifetimes and high resistivity, other methods should be employed. Here we explore an alternative technique, namely, heavy ion implantation, which has proved to be a viable alternative to the LT growth, at least in the case of GaAs.
机译:低温(LT)GaAs具有超快光电应用近乎理想的性能,即亚皮秒的光学响应时间,高电阻率和良好的迁移率。在这种材料中,离子化的反位缺陷充当主要的电子陷阱和复合中心。从光纤通信技术的角度来看,InP尤其是具有相似材料特性的In_(0.53)Ga_(0.47)As具有更大的兴趣,因为与GaAs相比,它们的带隙更小。但是,InGaAs中的As反位点会形成浅的供体,并与其他固有缺陷(例如As空位-Ⅲ族间隙复合物)一起,阻止了LT生长来制造高阻InGaAs层。 LT InP也是导电的(n型),因为磷反位缺陷的电离能级位于导带中。因此,即使LT生长允许获得具有短电子寿命的InP和InGaAs层,但是由于低电阻率,这些层几乎不适用于超快光电器件。因此,为了生产具有超短载流子寿命和高电阻率的层,应采用其他方法。在这里,我们探讨了一种替代技术,即重离子注入,至少在GaAs的情况下,它已被证明是LT生长的可行替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号