【24h】

Efficient experimental analysis of internal temperatures in VCSELs

机译:VCSEL内部温度的高效实验分析

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Vertical-cavity surface-emitting lasers (VCSELs) are widely used in short-range optical data transmission and optical sensing. Tailored heating and infrared illumination with large two-dimensional parallel-driven VCSEL arrays are gaining more and more attention. In the latter fields as well as in high-speed datacom the laser performance is limited by internal heating at high operating currents or elevated ambient temperatures, resulting in a saturation of the achievable output power and a reduction of the device lifetime. The average internal temperature Ti in the laser cavity is a key parameter to assess new VCSEL designs for applications involving high thermal stress. A versatile experimental method to determine Ti should be easy to employ in standard test environments. The increase of the internal temperature above the ambient level Ta is commonly quantified by the thermal resistance RTh = ΔTi / ΔPdiss, which relates the temperature change ΔTi to a change of dissipated power ΔPdiss. It is well known that the emission wavelength λ can be used as an indicator for Ti, because the optical cavity length depends on Ti and directly affects λ. In the conventional experimental approach, the coefficient C = dλ/dTi is either assumed to be constant [1], which introduces an error due to its material composition dependence, or C is (correctly) determined from <; 100 ns range pulsed operation of the laser [2], which, however, requires high-frequency equipment and must be done with much care. We have devised a new method to evaluate RTh based on easily measurable light-current-voltage (LIV) curves for different Ta and associated optical spectra at a reduced number of operation points [3]. No empirical parameter is needed and nonlinearities due to temperature-dependent thermal conductivities are automatically included. Both single-mode and multi-mode devices can be analyzed by monitoring the wavelength shifts of fixed transverse modes. Here we apply this method to determine the maximum lasing temperature of various VCSELs and show that it is a figure of merit for temperature stability.
机译:仅提供摘要表格。垂直腔面发射激光器(VCSEL)广泛用于短距离光学数据传输和光学传感。具有大型二维并行驱动VCSEL阵列的量身定制的加热和红外照明越来越受到关注。在后面的领域以及在高速数据通信中,激光器的性能受到高工作电流或升高的环境温度下内部加热的限制,从而导致可达到的输出功率饱和并缩短了设备寿命。激光腔中的平均内部温度Ti是评估新VCSEL设计用于涉及高热应力的应用的关键参数。确定T i 的通用实验方法应易于在标准测试环境中采用。内部温度高于环境温度Ta的升高通常由热阻R Th =ΔT i /ΔP diss 来量化,这与温度变化ΔT i 到耗散功率ΔP diss 的变化。众所周知,发射波长λ可以用作Ti的指标,因为光腔长度取决于Ti并且直接影响λ。在传统的实验方法中,系数C =dλ/ dT i 被假定为常数[1],由于其材料成分依赖性而引入了误差,或者(正确)确定了C <;激光器[2]的脉冲范围为100 ns,但是这需要高频设备,并且必须非常小心。我们设计了一种新的方法来评估R Th ,该方法基于易于测量的不同Ta的光电流-电压(LIV)曲线以及在减少的工作点处的相关光谱[3]。不需要经验参数,并且自动包括由于温度相关的热导率引起的非线性。可以通过监视固定横向模式的波长偏移来分析单模式和多模式设备。在这里,我们采用这种方法来确定各种VCSEL的最高激光发射温度,并表明这是温度稳定性的一个指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号