【24h】

MOLECULAR DYNAMICS SIMULATION OF INTERFACIAL THERMAL RESISTANCE OF NANOFINS

机译:纳米素界面热阻的分子动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

In this study molecular dynamic (MD) simulations are performed to study the interfacial thermal resistance between a nanofin and a working fluid. A (5, 5) carbon nanotube (CNT) of diameter 6.78 A and various lengths are immersed in different fluids in these analyses. For this simulation the total numbers of the fluid molecules, and the breath and the height of the cell are kept constant. In these simulations, the nanotube is placed at the centre of the cell and the matrix molecules surround the nanotube. Periodic boundary conditions are applied in all the directions. So the system under consideration is array of long nanotubes aligned in the horizontal direction. Simulation procedure consists of first minimizing the system. During the minimization the system is allowed to relax. During the simulations, nanotube and water molecules are allowed to move but the cell size remains constant. After minimization, NVT process is performed for 10ps to scale the velocities so that the average temperature of the cell is 300K. After the ensemble is equilibrated to the base temperature of 300K, the temperature of the nanotube is raised to 750K, by scaling the velocities of the carbon atoms. In the next step the system is allowed to relax under constant energy. This is done by performing the NVE equilibration for 10ps. The difference in the temperature of the carbon nanotube and the matrix is then calculated and plotted against the equilibration time.rnFor the all three matrix, the temperature decreases exponentially with time as predicted by various researchers in the literature. From the graphs the interfacial resistance for water, ethyl alcohol and 1-Hexene is found to be 7.76×10-8, 6.76×10-8 and 35.1×10-8 W/m2K. The value of interfacial resistance for water is consistent with results in the literature.
机译:在这项研究中,进行了分子动力学(MD)模拟,以研究纳米鳍片和工作流体之间的界面热阻。在这些分析中,将直径为6.78 A和各种长度的(5,5)碳纳米管(CNT)浸入不同的流体中。对于此模拟,流体分子的总数以及呼吸和细胞高度保持恒定。在这些模拟中,纳米管位于细胞的中心,而基质分子围绕纳米管。周期性边界条件应用于所有方向。因此,正在考虑的系统是在水平方向排列的长纳米管阵列。仿真过程包括首先最小化系统。在最小化期间​​,允许系统放松。在模拟过程中,纳米管和水分子可以移动,但单元大小保持不变。最小化之后,执行NVT处理10ps以缩放速度,以使单元的平均温度为300K。在将集合体平衡至300K的基本温度后,通过缩放碳原子的速度,将纳米管的温度升高至750K。在下一步中,使系统在恒定能量下松弛。这是通过执行10ps的NVE平衡来完成的。然后计算碳纳米管和基体的温度差,并针对平衡时间作图。对于所有三种基体,温度均随时间的推移呈指数下降,这是文献中各种研究人员所预测的。从图中可知,水,乙醇和1-己烯的界面电阻为7.76×10-8、6.76×10-8和35.1×10-8 W / m2K。对于水的界面电阻值与文献中的结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号