【24h】

Hybrid Photoelectrochemical-Fuel Cell

机译:混合光电化学燃料电池

获取原文
获取原文并翻译 | 示例

摘要

Plants use photosynthesis to convert light energy into electrochemical potential, and ultimately into chemical potential energy stored in reduced carbon compounds. When oxidized, these compounds provide energy to plants and heterotrophic organisms. Mimicry of these processes is being investigated as a method for electricity production. Photovoltaic devices, such as dye-sensitized photoelectrochemical solar ceils, mimic the initial steps of photosynthesis. These employ nanoparticulate wide-bandgap semiconductor electrodes coated with monolayers of dyes that absorb light in the visible range and inject electrons into the conduction band of the semiconductor. A complementary aspect of biomimicry involves biofuel cells that produce electricity by oxidation of biological materials produced by photosynthesis. These cells often use enzymes to catalyze the oxidation of carbohydrates and other reduced-carbon fuel, and couple the oxidation to electrical current flow between an anode and a cathode. In a new approach to biomimicry we combined a dye-sensitized nanoparticulate semiconductor photoanode with an enzyme-catalyzed biofuel cell. The hybrid cell offers several potential advantages over either a dye-sensitized photoelectrochemical cell or a biofuel cell, including the ability to produce more power.
机译:植物利用光合作用将光能转换为电化学势,并最终转换为还原碳化合物中存储的化学势能。当被氧化时,这些化合物为植物和异养生物提供能量。正在研究模仿这些过程作为电力生产的方法。诸如染料敏化光电化学太阳能电池之类的光伏设备模仿了光合作用的初始步骤。这些方法采用纳米粒子宽带隙半导体电极,这些电极涂覆有染料的单层膜,染料可吸收可见光范围内的光并将电子注入半导体的导带中。仿生的一个补充方面涉及通过光合作用产生的生物材料的氧化来发电的生物燃料电池。这些电池经常使用酶催化碳水化合物和其他还原碳燃料的氧化,并将氧化与阳极和阴极之间的电流耦合。在一种新的仿生方法中,我们将染料敏化的纳米颗粒半导体光电阳极与酶催化的生物燃料电池结合在一起。与染料敏化光电化学电池或生物燃料电池相比,混合电池具有若干潜在优势,包括产生更多功率的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号