首页> 外文会议>Adaptive optics and wavefront control for biological systems III >Nonlinear Adaptive Optics: Aberration Correction in Three Photon Fluorescence Microscopy for Brain Imaging
【24h】

Nonlinear Adaptive Optics: Aberration Correction in Three Photon Fluorescence Microscopy for Brain Imaging

机译:非线性自适应光学:脑成像的三光子荧光显微镜中的像差校正

获取原文
获取原文并翻译 | 示例

摘要

Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.
机译:多光子荧光显微镜是一种成熟的技术,可用于亚细胞分辨率的深层组织成像。三光子显微镜(3PM)与长波长激发相结合显示在生物组织(例如小鼠脑)中比两光子显微镜(2PM)成像更深,因为离焦的背景光可以进一步降低高阶非线性激励。如2PM系统中所证明的,可以使用自适应光学(AO)技术通过像差校正来改善成像深度和分辨率,该技术基于使用空间光调制器(SLM)对扫描光束进行整形。这样,可以补偿组织的低阶像差,并且在某种程度上可以补偿组织的散射。在这里,我们介绍用于大脑成像的3PM AO显微镜系统。孤子自频移用于创建1675 nm的飞秒源,而微机电(MEMS)SLM用作波阵面成形设备。我们使用修改后的非线性版本的三点相移干涉术来扰动1020段SLM。用于反馈的荧光信号的非线性特性可确保在光斑尺寸减小时信号不断增大,从而可以在迭代优化过程中补偿相位误差,而无需直接进行相位测量。我们比较了不同阶次非线性反馈的性能,显示了随着非线性阶次增加信号改善的指数增长。我们通过将3PM AO系统应用于体内小鼠大脑成像来证明该方法的效果,该方法显示了大脑内部1毫米深度处信号的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号