首页> 外文会议>Advances in Electronic Packaging 2005 pt.A >MATHEMATICAL OPTIMIZATION OF ELECTRONIC ENCLOSURES
【24h】

MATHEMATICAL OPTIMIZATION OF ELECTRONIC ENCLOSURES

机译:电子外壳的数学优化

获取原文
获取原文并翻译 | 示例

摘要

The thermal design of electronic enclosures is becoming more important as the demand for smaller, lighter systems with better performance increases. The limiting factor on the lifetime of these systems is the maximum temperature of the electronic components. Nowadays in some systems, the thermal design is the limiting factor for performance increases. A simple yet effective design method that yields optimum designs is therefore required to design these systems. Traditionally, experimental methods were used in the design of electronic enclosures. More recently Computational Fluid Dynamics (CFD) has established itself as a viable alternative to reduce the number of experimentation required, resulting in a reduction in the time scales and cost of the design process. The CFD process is usually applied on a trial and error basis and relies heavily on the insight and experience of the designer to improve designs. Even an experienced designer will only be able to improve the design and does not necessarily guarantee optimum results. A more efficient design method is to combine a mathematical optimizer with CFD. In this study the mathematical optimization method, DYNAMIC-Q, is linked with the commercial CFD package, Icepak to optimize different electronic enclosures. The method is applied to the following design situations commonly found in electronics enclosures. The first case is that of the optimization outlet grille of a telecommunications rack to reduce the electromagnetic interference without exceeding a specified temperature in the rack. The second case involves the optimum placement of electronic components on a printed circuit board to minimize the maximum temperatures of the components. The third case deals with flow through an electronic enclosure cooled by fans placed on the wall of the enclosures. The geometrical arrangement of boards and components on the boards in these enclosures might result in unequal flow distribution between the boards. For this purpose air flow filters of varying free-area ratios are used to make the flow rates between the boards more uniform. The free-area ratios of three filters are determined in order to maximize the total flow rate through system with the added constraint that the flow rates through each of the three filters are within 5% of each other. The last case deals with flow through a simplified notebook where the CPU temperature is minimized by changing the position of two exhaust fans. The study shows that mathematical optimization is a powerful tool that can be combined with CFD to yield optimum designs.
机译:随着对具有更好性能的更小,更轻的系统的需求增加,电子外壳的热设计变得越来越重要。这些系统寿命的限制因素是电子组件的最高温度。如今,在某些系统中,散热设计是性能提高的限制因素。因此,需要一种简单而有效的设计方法来产生最佳设计,以设计这些系统。传统上,实验方法用于电子外壳的设计中。最近,计算流体动力学(CFD)已确立其自身地位,成为减少所需实验次数的可行选择,从而减少了设计过程的时间规模和成本。 CFD流程通常是在反复试验的基础上应用的,并且在很大程度上依赖于设计师的见识和经验来改进设计。即使是经验丰富的设计师,也只能改善设计,并不一定能保证最佳效果。一种更有效的设计方法是将数学优化器与CFD相结合。在这项研究中,数学优化方法DYNAMIC-Q与商用CFD软件包Icepak链接在一起,以优化不同的电子外壳。该方法适用于以下通常在电子设备外壳中发现的设计情况。第一种情况是电信机架的优化出口格栅,以在不超过机架中的指定温度的情况下减少电磁干扰。第二种情况涉及电子元件在印刷电路板上的最佳放置,以最大程度地降低元件的最高温度。第三种情况涉及通过电子外壳的流动,该电子外壳由放置在外壳壁上的风扇冷却。在这些机柜中,板和组件在板上的几何布置可能会导致板之间的流量分配不均。为此目的,使用具有不同自由面积比的气流过滤器,以使板之间的流速更均匀。确定三个过滤器的自由面积比,以使通过系统的总流量最大化,同时增加了三个过滤器中每个过滤器的流量都在5%以内的限制。最后一种情况是通过简化的笔记本电脑处理的,其中通过更改两个排气扇的位置将CPU温度降至最低。研究表明,数学优化是可以与CFD结合使用以产生最佳设计的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号