【24h】

Pump-Probe Experimental Study of Phonon Reflectivity at an Interface and Phonon Relaxation Time

机译:界面声子反射率和声子弛豫时间的Pump-Probe实验研究

获取原文
获取原文并翻译 | 示例

摘要

Heat transfer in nanostructures differs significantly from that in macrostructures because of classical and quantum size effects on energy carriers, i.e., phonons, electrons, and photons. Understanding thermal transport in nanostructures is of fundamental importance to a variety of technologies, including thermal management of nanoelectronics and optoelectronics, energy conversion, nanofabrication, and sensor development. A better understanding of the energy transport at nanoscale calls for both simulations and experimental techniques on thermal transport in nanostructures. Boltzmann transport equation (BTE) is often used to study energy transport in nanostructures, which can be valid down to a few nanometers when the quantum size effect is not as important. Regardless of its complexity involved in numerical simulation, there are a few fundamental challenges to overcome before making Boltzmann transport equation a more predictive tool than it is today as an explanation tool for observed phenomena. Among all those challenges, the two most important are carrier scattering rate and reflectivity of energy carriers at an interface. No experimental work exists so far to extract phonon reflectivity at an interface and phonon relaxation time.
机译:纳米结构中的传热与宏观结构中的传热显着不同,这是因为经典的和量子尺寸对能量载体即声子,电子和光子的影响。了解纳米结构中的热传输对多种技术至关重要,包括纳米电子和光电子的热管理,能量转换,纳米制造和传感器开发。对纳米级能量传输的更好理解要求对纳米结构中的热传输进行仿真和实验技术。玻耳兹曼输运方程(BTE)通常用于研究纳米结构中的能量输运,当量子尺寸效应不那么重要时,它可以有效地作用到几纳米。不管其在数值模拟中的复杂性如何,在使玻尔兹曼输运方程成为比今天作为观察现象的解释工具更具预测性的工具之前,都需要克服一些基本挑战。在所有这些挑战中,最重要的两个是界面处的载流子散射速率和能量载流子的反射率。到目前为止,还没有实验工作来提取界面处的声子反射率和声子弛豫时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号