首页> 外文会议>Application and sustainability of technologies >An Overview of Prediction and Control of Air Flow inAcid-Generating Waste Rock Dumps
【24h】

An Overview of Prediction and Control of Air Flow inAcid-Generating Waste Rock Dumps

机译:产酸废石堆中气流的预测和控制概述

获取原文
获取原文并翻译 | 示例

摘要

Air movement and associated oxygen transport through waste rockrndumps has the potential to significantly enhance the rate of oxidation ofrnpyrite-bearing material. While this is a desired outcome for most heaprnleach operations, airflow in waste rock storage facilities can result inrnsignificant increases in generation and acceleration of acid rock drainage.rnHence, a good understanding of internal airflow through waste rockrndumps is required to control ARD and minimise any associated liability.rnThe principal mechanisms contributing to airflow and oxygenrntransport in a waste rock pile include:rn1. Diffusion;rn2. Advection due to a thermal gradient (chimney effect) and/or windrnpressure gradients; andrn3. Advection due to barometric pumping.rnWhile diffusion is typically limited to a near-surface zone of a fewrnmeters depth, advection and barometric pumping have the potential tornmove air (and oxygen) to much greater depths into the pile. In general,rnthe more permeable the waste rock material, and the greater thernheight-to-width ratio of the waste rock pile, the greater is the potential forrnadvective air movement. The reactivity of the waste rock material as wellrnas the coarseness (hence air permeability), and the spatial variability ofrnthese properties within a pile, have a strong influence on the magnitudernof thermally induced advection. In contrast, air movement due tornbarometric pumping is controlled by the waste rock porosity, changes inrnambient air pressure and the heterogeneity of air permeability of thernwaste rock dump. Results of field monitoring and numerical modellingrnusing TOUGH AMD are presented to illustrate the concepts on airrnmovement in waste rock piles discussed in this paper.rnDuring the design and construction phase, airflow can be controlled byrnjudicious placement of reactive waste rock and use of selective placementrntechniques to control the internal structure of the waste rock facility (egrnintroduction of horizontal layering, prevention of inclined,rnhigh-permeability, channels (‘chimneys’)). Several closure measures arernavailable to minimise airflow including:rn1. Placement of a low-permeability cover to reduce air entry; andrn2. Placement of a non-reactive cover material to isolate reactivernmaterial from the zone of active airflow and/or regrading of thernwaste rock pile to obtain a geometry and internal structure lessrnsusceptible to advective airflow.
机译:通过废石堆的空气流动和相关的氧气传输有可能显着提高含硫铁矿材料的氧化速率。尽管这对于大多数堆浸操作来说都是理想的结果,但废石存储设施中的气流会导致酸性岩石排泄的产生和加速显着增加。因此,需要对通过废石堆的内部气流有很好的了解,以控制ARD并最大程度地减少任何相关废物堆中气流和氧气输送的主要机理包括:1。扩散; rn2。由于温度梯度(烟囱效应)和/或风压梯度引起的对流; Andrn3。由于大气抽运而产生的平流。虽然扩散通常限于几毫米深度的近地表区域,但对流和大气抽运有可能将空气(和氧气)撕裂到更大的深度。通常,waste石材料的渗透性越高,waste石桩的高宽比越大,则对流空气运动的可能性就越大。 waste石材料的反应性以及其粗糙度(因此具有透气性)以及桩内这些性质的空间变异性,对热诱导平流的幅度有很大影响。相比之下,气压抽运引起的空气运动受the石孔隙度,环境气压的变化以及the石堆场的透气性异质性的控制。提出了利用TOUGH AMD进行现场监测和数值建模的结果,以阐明本文讨论的waste石桩中空气运动的概念。在设计和施工阶段,可以通过对反应waste石进行明智的布置和使用选择性布置技术来控制气流。 rock石设施的内部结构(例如,引入水平分层,防止倾斜,高渗透性,通道(“烟囱”))。采取几种关闭措施以最大程度地减少气流,包括:rn1。放置低渗透率的覆盖物以减少空气进入;安德鲁2。放置非反应性覆盖材料以将反应性材料与活动气流区域隔离和/或使废石堆降解,以获得对流气流不敏感的几何形状和内部结构。

著录项

  • 来源
  • 会议地点 Cairns(AU)
  • 作者单位

    Robertson GeoConsultants Inc, Suite 330, 580 Hornby Street,rnVancouver BC V6C 3B6, Canada;

    INRS-Eau, Terre et Environnement (INRS-ETE), Institut national dernla recherche scientifique, Université du Québec, CentrernGéoscientifique de Québec, 880 Chemin Sainte-Foy, Bureau 780,rnSainte-Foy QC G1V 4C7, Canada;

    Robertson GeoConsultants Inc, Suite 330, 580 Hornby Street,rnVancouver BC V6C 3B6, Canada.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 矿业工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号