首页> 外文会议>Laser-based Micro- and Nanoprocessing XIII >Comparison of self-organized microanostructure formation on copper using dual-pulse versus single-pulse femtosecond laser surface processing
【24h】

Comparison of self-organized microanostructure formation on copper using dual-pulse versus single-pulse femtosecond laser surface processing

机译:使用双脉冲飞秒激光表面处理和单脉冲飞秒激光表面处理在铜上自组织微/纳米结构形成的比较

获取原文
获取原文并翻译 | 示例

摘要

The use of self-organized microanostructured surfaces formed using femtosecond laser surface processing (FLSP)techniques has become a promising area of research for enhancing surface properties of metals, with many applicationsincluding enhancing heat transfer. In this work, we demonstrate advantages of the use of dual-pulse versus single-pulseFLSP techniques to produce self-organized microanostructures on copper. With the dual-pulse technique, thefemtosecond pulses out of the laser (spaced 1 ms apart) are split into pulse pairs spaced < 1 ns apart and are focusedcollinear on the sample surface. Single-pulse FLSP techniques have been widely used to produce self-organized"mound-like" structures on a wide range of metals including a number of stainless steel alloys, aluminum, nickel,titanium, and recently on copper. Due to its high thermal conductivity, copper is used in many critical heat transferapplications and microanostructured copper surfaces are desired to further improve heat transfer characteristics. Usingsingle-pulse (pulses spaced 1 ms apart) FLSP techniques, self-organized microstructure formation on copper requiresmuch higher pulse fluence than is commonly used for producing microstructures on other metals, which results ininstabilities during laser processing (non-uniform surfaces), low processing efficiency, and limitations on the control ofthe types of structures produced. In this paper, we report results that demonstrate that the dual-pulse FLSP technique canbe used to produce microstructures on copper more efficiently than using single-pulse FLSP, with better control of thesurface structures produced. Cross-sectional subsurface microstructure analysis is also presented for single-pulse versusdual-pulse FLSP functionalized copper surfaces.
机译:飞秒激光表面处理(FLSP)技术形成的自组织微/纳米结构表面的使用已成为增强金属表面性能的有前途的研究领域,其许多应用包括增强传热。在这项工作中,我们展示了使用双脉冲与单脉冲\ r \ nFLSP技术在铜上产生自组织的微观/纳米结构的优势。使用双脉冲技术,激光中的飞秒脉冲(间隔为1 ms)被分成间隔小于1 ns的脉冲对,并聚焦在样品表面上。单脉冲FLSP技术已广泛用于在多种金属(包括许多不锈钢合金,铝,镍,钛和钛)上产生自组织的“堆状”结构。最近在铜上。由于铜的高导热率,铜被用于许多关键的传热应用中,并且需要微/纳米结构化的铜表面以进一步改善传热特性。使用单脉冲(间隔为1 ms的脉冲)FLSP技术,在铜上形成自组织微结构所需的脉冲通量要比通常在其他金属上产生微结构所使用的脉冲通量高,这会导致不稳定在激光加工过程中(表面不均匀),加工效率低以及对所生产结构类型的控制存在限制。在本文中,我们报告的结果表明,与使用单脉冲FLSP相比,双脉冲FLSP技术可以更有效地在铜上产生微观结构,并且可以更好地控制所产生的表面结构。还提供了单脉冲对双脉冲FLSP功能化铜表面的横截面亚显微组织分析。

著录项

  • 来源
    《Laser-based Micro- and Nanoprocessing XIII》|2019年|109060Q.1-109060Q.9|共9页
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Dept. of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

    Dept. of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE USA 68588;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号