首页> 外文会议>Bioengineered and bioinspired systems IV >A Hierarchical Artificial Retina Architecture
【24h】

A Hierarchical Artificial Retina Architecture

机译:人工视网膜分层体系结构

获取原文
获取原文并翻译 | 示例

摘要

Connectivity in the human retina is complex. Over one hundred million photoreceptors transduce light into electrical signals. These electrical signals are sent to the ganglion cells through amacrine and bipolar cells. Lateral connections involving horizontal and amacrine cells span throughout the outer plexiform layer and inner plexiform layer respectively. Horizontal cells are important for photoreceptor regulation by depolarizing them after an illumination occurs. Horizontal cells themselves form an electrical network that communicates by gap junctions, and these cells exhibit plasticity (change in behavior and structure) with respect to glycine receptors. The bipolar and amacrine cells transfer electrical signals from photoreceptors to the ganglion cells. Furthermore, amacrine cells are responsible for further processing the retinal image. Finally, the ganglion cells receive electrical signals from the bipolar and amacrine cells and will spike at a faster rate if there is a change in the overall intensity for a group of photoreceptors, sending a signal to the brain.rnDramatic progress is being made with respect to retinal prostheses, raising hope for an entire synthetic retina in the future. We propose a bio-inspired 3D hierarchical pyramidal architecture for a synthetic retina that mimics the overall structure of the human retina. We chose to use a 3D architecture to facilitate connectivity among retinal cells, maintaining a hierarchical structure similar to that of the biological retina. The first layer of the architecture contains electronic circuits that model photoreceptors and horizontal cells. The second layer contains amacrine and bipolar electronic cells, and the third layer contains ganglion cells. Layer I has the highest number of cells, and layer III has the lowest number of cells, resulting in a pyramidal architecture. In our proposed architecture we intend to use photodetectors to transduce light into electrical signals. We propose to employ wireless communication to mimic the gap junction behavior among horizontal cells. These cells could communicate laterally to neighboring horizontal cells through a network of spin wave transmitters and receivers that send magnetic waves over the surface of the first layer of the synthetic retina. We discuss the tradeoffs for having point-to-point connections versus a network on chip in the second layer. We examine the use of 3D CMOS technologies as well as nanotechnologies for the implementation of this retina, considering size, interconnectivity capabilities, and power consumption. Finally, we estimate the volume, delay and power dissipation of our architecture.
机译:人体视网膜的连通性很复杂。超过一亿个感光器将光转换为电信号。这些电信号通过无长突和双极细胞被发送到神经节细胞。涉及水平和无长突细胞的横向连接分别横跨整个外部丛状层和内部丛状层。水平单元对于光感受器的调节很重要,因为在发生照明后,它们会去极化。水平细胞本身形成通过间隙连接进行通信的电网,并且这些细胞相对于甘氨酸受体表现出可塑性(行为和结构的变化)。双极和无长突细胞将电信号从感光器传递到神经节细胞。此外,无长突细胞负责进一步处理视网膜图像。最后,神经节细胞从双极和无长突细胞接收电信号,如果一组感光体的整体强度发生变化,神经节细胞将以更快的速率突跳,向大脑发送信号。视网膜假体,为将来整个人造视网膜的发展带来希望。我们提出了一种仿生视网膜的生物启发式3D金字塔结构,该结构模仿了人类视网膜的整体结构。我们选择使用3D架构来促进视网膜细胞之间的连接,并保持类似于生物视网膜的分层结构。该体系结构的第一层包含对感光器和水平单元进行建模的电子电路。第二层包含无长突和双极电子细胞,第三层包含神经节细胞。第I层具有最高数量的单元,而第III层具有最低数量的单元,从而形成金字塔结构。在我们提出的体系结构中,我们打算使用光电探测器将光转换为电信号。我们建议采用无线通信来模仿水平单元之间的间隙连接行为。这些细胞可以通过自旋波发射器和接收器网络与相邻的水平细胞横向通信,这些网络在合成视网膜的第一层表面上发送电磁波。我们讨论在第二层中使用点对点连接与片上网络的权衡。考虑到尺寸,互连能力和功耗,我们研究了3D CMOS技术以及纳米技术在此视网膜上的实现方式。最后,我们估计架构的体积,延迟和功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号