首页> 外文会议>Cold regions engineering 2009 : Cold regions impact on research, design, and construction >Active layer and frost bulb interaction for a full-scale, buried chilled gas pipeline
【24h】

Active layer and frost bulb interaction for a full-scale, buried chilled gas pipeline

机译:主动层和霜冻球的相互作用,形成了一个完整的地下冷气管道

获取原文
获取原文并翻译 | 示例

摘要

Recent economic trends have sparked renewed interest in the development of a gas pipeline to transport natural gas from Alaska's North Slope to markets in the contiguous United States. A buried chilled gas pipeline is a suitable design choice because of safety and environmental concerns. One major drawback is the interaction of the frost bulb with unfrozen, frost-susceptible soils. From 1999 to 2003, the University of Alaska Fairbanks and Hokkaido University in Japan ran a joint experiment to study the behavior of a full-scale, buried chilled gas pipeline. The pipeline, located outside of Fairbanks, Alaska, was constructed across a permafroston-permafrost boundary, in order to study the upheaval and stresses induced in the pipe due to differential frost heave. This paper details a small component of this project, namely the interaction between the frost bulb and the active layer immediately above the pipe. The temperature interaction at this interface was modeled using TEMP/W, a two-dimensional finite element program. Analysis of the model results indicates that the modeled temperatures correspond well to measured temperatures. The model results also indicate that at several times during the summer months, the frost bulb above the pipe was dramatically thinned due to spikes in the pipeline gas temperature. Coupled with cumulative stresses created in the pipe due to differential heave, this may result in loss of pipe structural integrity and ultimate failure. These results suggest that burial depth and the type of foundation soil present are critical elements of the final pipeline design.
机译:最近的经济趋势激发了人们对开发天然气管道的兴趣,该天然气管道用于将天然气从阿拉斯加的北坡运输到美国附近的​​市场。出于安全和环境方面的考虑,地下冷气管道是一种合适的设计选择。一个主要缺点是霜冻球与未冻结的易受霜冻的土壤相互作用。从1999年到2003年,阿拉斯加大学费尔班克斯分校和日本北海道大学进行了一项联合实验,研究了一条完整的地下冷气管道的性能。该管道位于阿拉斯加费尔班克斯(Fairbanks)的外部,跨过多年冻土/非多年冻土边界建造,目的是研究由于冻胀不均而引起的剧变和应力。本文详细介绍了该项目的一小部分,即霜冻球和管道上方的活性层之间的相互作用。使用二维有限元程序TEMP / W对该界面处的温度相互作用进行建模。对模型结果的分析表明,建模温度与测得的温度非常吻合。模型结果还表明,在夏季的几个月中,由于管道气体温度的峰值,管道上方的霜冻球显着变薄。加上由于不均匀的起伏在管道中产生的累积应力,这可能会导致管道结构完整性的损失和最终的破坏。这些结果表明埋藏深度和存在的基础土壤类型是最终管道设计的关键要素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号