首页> 外文会议>Compound semiconductors: thin-film photovoltaics, LEDs, and smart energy controls >Effect of Growth Pressure and Gas-Phase Chemistry on the Optical Quality of InGaN/GaN Multi-Quantum Wells
【24h】

Effect of Growth Pressure and Gas-Phase Chemistry on the Optical Quality of InGaN/GaN Multi-Quantum Wells

机译:生长压力和气相化学性质对InGaN / GaN多量子阱光学质量的影响

获取原文
获取原文并翻译 | 示例

摘要

Blue light-emitting diodes (LED's), utilizing InGaN-based multi-quantum well (MQW) active regions deposited by organometallic chemical vapor epitaxy (OMVPE), are one of the fundamental building-blocks for current solid-state lighting applications. Studies have previously been conducted to explore the optical and physical properties of the active MQW's over a variety of different OMVPE growth conditions. However, the conclusions of these papers have often been contradictory, possibly due to a limited data set or lack of understanding of the fundamental fluid dynamics and gas-phase chemistry that occurs during the deposition process. Multi-quantum well structures grown over a range of pressures from typical low-pressure production processes at 200 Torr, up to near-atmospheric growth conditions at 700 Torr, have been investigated in this study. At all growth pressures, clear trends of gas-phase chemical reactions are observed for increased gas residence times (lower gas speeds from the injector flange and lower rotation rates) and increased Ⅴ/Ⅲ ratios (higher NH_3 flows). Confocal microscopy, excitation-dependent PL (PLE), and time-resolved photo-luminescence (TRPL) have been employed on these MQW structures to investigate the carrier lifetime characteristics. Confocal emission images show spatially-separated bright and dark regions. The bright regions are red-shifted in wavelength relative to the dark regions, suggesting microscopic spatial localization of high indium content regions. As the growth pressure and gas residence times are reduced, a larger difference in band-gap between bright and dark regions, longer lifetimes, and higher average PL intensities can be obtained, indicating that higher optical quality material can be realized. Optimized MQW's grown at high pressure exhibit higher PLE slope intensities and IQE characteristics than lower pressure samples. Results on simple LED structures indicate that the improvement in MQW optical quality at high pressures translates to higher output power at a 110 A/cm~2 injection current density.
机译:蓝色发光二极管(LED)利用通过有机金属化学气相外延(OMVPE)沉积的基于InGaN的多量子阱(MQW)有源区,是当前固态照明应用的基本构件之一。先前已经进行了研究,以探索在各种不同的OMVPE生长条件下活性MQW的光学和物理性质。但是,这些论文的结论常常是矛盾的,这可能是由于数据集有限或对沉积过程中发生的基本流体动力学和气相化学反应缺乏了解。在这项研究中,已经研究了在从200 Torr的典型低压生产过程到700 Torr的近大气压生长条件下的压力范围内生长的多量子阱结构。在所有增长压力下,观察到明显的气相化学反应趋势,即气体停留时间增加(来自喷射器法兰的气体速度降低,转速降低)和Ⅴ/Ⅲ比率增加(NH_3流量增加)。共聚焦显微镜,依赖激发的PL(PLE)和时间分辨的光致发光(TRPL)已用于这些MQW结构上以研究载流子寿命特性。共聚焦发射图像显示了空间上分离的明暗区域。相对于暗区域,亮区域的波长发生红移,表明高铟含量区域的微观空间定位。随着生长压力和气体停留时间的减少,可获得明暗区域之间的带隙较大差异,更长的寿命和更高的平均PL强度,这表明可以实现更高的光学品质材料。与低压样品相比,在高压下生长的优化MQW具有更高的PLE斜率强度和IQE特性。简单LED结构的结果表明,高压下MQW光学质量的提高转化为注入电流密度为110 A / cm〜2时更高的输出功率。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873, U.S.A.;

    Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.;

    Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.,Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.;

    Nanoscale Science Program, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.;

    Department of Physics Optical Science, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.,Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号