首页> 外文会议>Cranfield Conference on Dynamica and Control of Systems and Structures in Space; 2004; Liguria; IT >Numerical Simulation of High Velocity Impacts on Thin Metallic Targets Ⅱ
【24h】

Numerical Simulation of High Velocity Impacts on Thin Metallic Targets Ⅱ

机译:高速撞击薄金属靶的数值模拟Ⅱ

获取原文
获取原文并翻译 | 示例

摘要

Spacecraft encounter various impact phenomena in space, among which orbital debris impacts are of most concern. These impacts occur at a wide range of velocities. Impact velocities from a few hundreds m/s to one km/s are common in geostationary orbit and even occur in low Earth orbit. However, these high velocity impacts are not fully characterised. It's required to study the shielding performance in order to assess the spacecraft survivability in the event of high velocity impacts. The paper is divided into two parts. Overall it investigates the capability of hydrocodes to simulate high velocity impacts. Particular interest is given to the post-penetration debris cloud characterisation and the material failure mode identification. Three different methods were used to simulate the impact of an aluminium sphere on a thin aluminium plate. The first part, considers analyses performed using a finite element model with element erosion and a discrete element method where the problem is modelled with discrete finite elements with nodes tied with breakable linkages. The second part of the paper considers the same problems with the Smoothed Particle Hydrodynamics (SPH) method using the MCM solver developed at Cranfield University. All three methods showed good agreement in terms of target damage with the available experimental results. However, their performances are different in terms of debris cloud and failure mode characterisation. As a large number of elements are deleted, the element erosion method shows problems in the petaling failure mode representation and doesn't allow the post-penetration debris cloud to be characterised. In order to be more reliable, the SPH method needs improvements, in particular to avoid tensile instability. The discrete element method allows good representation and identification of the failure modes even if some improvements in the definition of the node linkage failure criterion are required.
机译:航天器在太空中遇到各种撞击现象,其中最关注的是轨道碎片撞击。这些影响发生在各种各样的速度上。冲击速度从几百m / s到一km / s在对地静止轨道中很常见,甚至发生在低地球轨道中。但是,这些高速冲击并未得到充分表征。需要研究屏蔽性能,以评估高速撞击时航天器的生存能力。本文分为两部分。总的来说,它研究了水码模拟高速撞击的能力。特别关注穿透后的碎片云表征和材料破坏模式识别。使用三种不同的方法来模拟铝球对薄铝板的影响。第一部分,考虑使用有限元模型和有限元模型进行分析,其中有限元模型具有单元腐蚀和离散元方法,其中问题是通过离散的有限元建模的,节点的节点由易断裂的链接束缚。本文的第二部分考虑了使用克兰菲尔德大学开发的MCM求解器的“平滑粒子流体动力学(SPH)”方法所遇到的相同问题。三种方法在目标损伤方面均与可用的实验结果显示出良好的一致性。但是,它们在碎片云和故障模式表征方面的性能有所不同。由于删除了大量元素,因此元素侵蚀方法在花瓣状破坏模式表示中出现问题,并且无法表征穿透后的碎片云。为了更可靠,SPH方法需要改进,特别是避免拉伸不稳定性。即使需要对节点链接故障准则的定义进行一些改进,离散元素方法也可以很好地表示和识别故障模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号