首页> 外文会议>Current developments in lens design and optical engineering XVII >Novel microfluidic devices for Raman spectroscopy and optical trapping
【24h】

Novel microfluidic devices for Raman spectroscopy and optical trapping

机译:用于拉曼光谱和光阱的新型微流体装置

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, Raman spectroscopy is done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. We present the modeling, the design and the fabrication process of a microfluidic device incorporation Raman spectroscopy, from which one enables confocal Raman measurements on-chip. The latter is fabricated using ultra precision diamond tooling and is tested in a proof-of-concept setup, by for example measuring Raman spectra of urea solutions with various concentrations. If one wants to analyze single cells instead of a sample solution, precautions need to be taken. Since Raman scattering is a weak process, the molecular fingerprint of flowing particles would be hard to measure. One method is to stably position the cell under test in the detection area during acquisition of the Raman scattering such that the acquisition time can be increased. Positioning of cells can be done through optical trapping and leads to an enhanced signal-to-noise ratio and thus a more reliable cell identification. Like Raman spectroscopy, optical trapping can also be miniaturized. We present the modeling, design process and fabrication of a mass-manufacturable polymer microfluidic device for dual fiber optical trapping using two counterpropagating single-mode beams. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we characterize the trapping capabilities of the hot embossed chip.
机译:传统上,拉曼光谱法是在专门的实验室中进行的,在设备,时间和所需物质的手动采样方面有相当大的要求。我们介绍了结合拉曼光谱的微流控设备的建模,设计和制造过程,从中可以实现共焦拉曼片上测量。后者是使用超精密金刚石工具制造的,并通过概念验证装置进行了测试,例如通过测量各种浓度的尿素溶液的拉曼光谱进行测试。如果要分析单个细胞而不是样品溶液,则需要采取预防措施。由于拉曼散射是一个微弱的过程,流动粒子的分子指纹将很难测量。一种方法是在获取拉曼散射期间将被测细胞稳定地放置在检测区域中,从而可以增加获取时间。细胞的定位可以通过光学捕获来完成,并导致信噪比提高,从而使细胞鉴定更加可靠。像拉曼光谱一样,光阱也可以被小型化。我们介绍了使用两个反向传播的单模光束的双光纤捕获的可大规模生产的聚合物微流体装置的建模,设计过程和制造。我们使用一种新颖的制造工艺,该工艺包括预磨步骤和超精密金刚石工具,用于制造模具,并进行双面热压花以进行复制,从而形成用于光阱的坚固的微流体芯片。在概念验证演示中,我们描述了热压纹芯片的陷印能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号