首页> 外文会议>Frontiers in biological detection: from nanosensors to systems V >A Computational Approach to Optimize Microring Resonators for Biosensing Applications
【24h】

A Computational Approach to Optimize Microring Resonators for Biosensing Applications

机译:一种为生物传感应用优化微环谐振器的计算方法

获取原文
获取原文并翻译 | 示例

摘要

Microcavity structures have recently found utility in chemical/biological sensing applications. The appeal of these structures over other refractive index-based sensing schemes, such as those based on surface plasmon resonance, lies in their potential for producing a highly sensitive response to binding events. High-Q devices, characterized by sharp line widths, are extremely attractive for sensing applications because the bound analyte provides an increased optical pathlength, thus shifting the resonant frequency of the device, In this work, we design and simulate resonant microrings using full-wave finite element models. In addition to structure design, integration of the biological recognition element on the resonator is also considered. This is equally important in dictating the sensitivity of the sensing device. To this end, we take a four-step theoretical approach to optimizing the sensor. We begin by using FEM analysis to obtain the characteristic resonant wavelength, line width, and quality factor for bare ring resonators absent of surface functionalization. Next, we simulate the structure with a biorecognition element attached to the surface. The third step is to model the functionalized microring to mimic the interaction with the target analyte. At each step, we derive the transmission spectra, electric field distributions and coupling efficiencies, as well as wavelength dependence using empirical data for the refractive indices of biorecognition element and analyte. Finally, the geometry of the microrings is optimized in conjunction with the constituent material properties and the recognition chemistry using FEM combined with an optimization algorithm to maximize the sensitivity of the integrated biosensor.
机译:最近发现微腔结构可用于化学/生物传感应用。这些结构相对于其他基于折射率的传感方案(例如基于表面等离振子共振的方案)的吸引力在于,它们具有对结合事件产生高度敏感的反应的潜力。具有窄线宽特征的高Q器件对传感应用极具吸引力,因为结合的分析物提供了更长的光程,从而改变了器件的谐振频率。在这项工作中,我们使用全波设计和模拟谐振微环有限元模型。除了结构设计之外,还考虑了生物识别元件在谐振器上的集成。这对于决定传感设备的灵敏度同样重要。为此,我们采用四步理论方法来优化传感器。我们首先使用FEM分析来获得没有表面功能化的裸环谐振器的特征谐振波长,线宽和品质因数。接下来,我们用附着在表面的生物识别元件模拟结构。第三步是对功能化的微环建模,以模拟与目标分析物的相互作用。在每个步骤中,我们使用经验数据获取生物识别元素和分析物的折射率,从而得出透射光谱,电场分布和耦合效率以及波长依赖性。最后,结合有限元法和优化算法,结合组成材料的特性和识别化学对微环的几何结构进行优化,以最大化集成式生物传感器的灵敏度。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Purdue University, Birck Nanotechnology Center, 1205 West State Street, West Lafayette, Indiana 47907;

    Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433;

    Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433;

    Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433;

    Purdue University, Birck Nanotechnology Center, 1205 West State Street, West Lafayette, Indiana 47907;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biosensing; ring resonator; microcavity; silicon photonics;

    机译:生物传感环形谐振器微腔;硅光子学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号