首页> 外文会议>Conference on frontiers in biological detection: from nanosensors to systems V >A Computational Approach to Optimize Microring Resonators for Biosensing Applications
【24h】

A Computational Approach to Optimize Microring Resonators for Biosensing Applications

机译:优化生物传感应用微管谐振器的计算方法

获取原文

摘要

Microcavity structures have recently found utility in chemical/biological sensing applications. The appeal of these structures over other refractive index-based sensing schemes, such as those based on surface plasmon resonance, lies in their potential for producing a highly sensitive response to binding events. High-Q devices, characterized by sharp line widths, are extremely attractive for sensing applications because the bound analyte provides an increased optical pathlength, thus shifting the resonant frequency of the device, In this work, we design and simulate resonant microrings using full-wave finite element models. In addition to structure design, integration of the biological recognition element on the resonator is also considered. This is equally important in dictating the sensitivity of the sensing device. To this end, we take a four-step theoretical approach to optimizing the sensor. We begin by using FEM analysis to obtain the characteristic resonant wavelength, line width, and quality factor for bare ring resonators absent of surface functionalization. Next, we simulate the structure with a biorecognition element attached to the surface. The third step is to model the functionalized microring to mimic the interaction with the target analyte. At each step, we derive the transmission spectra, electric field distributions and coupling efficiencies, as well as wavelength dependence using empirical data for the refractive indices of biorecognition element and analyte. Finally, the geometry of the microrings is optimized in conjunction with the constituent material properties and the recognition chemistry using FEM combined with an optimization algorithm to maximize the sensitivity of the integrated biosensor.
机译:Microcavity结构最近发现了化学/生物传感应用中的效用。这些结构对基于折射率的感测方案的吸引力,例如基于表面等离子体共振的那些,其位于它们对绑定事件的高度敏感反应的可能性。具有尖锐线宽的高Q器件,对于传感应用,具有极具吸引力的,因为结合的分析物提供了增加的光学路径长度,从而在这项工作中转换了器件的谐振频率,我们使用全波设计和模拟谐振磁力调节有限元模型。除了结构设计之外,还考虑了谐振器上的生物识别元件的集成。这对于描述感测装置的灵敏度同样重要。为此,我们采取四步理论方法来优化传感器。我们首先使用有限元分析来获得表面官能化的裸环谐振器的特征谐振波长,线宽和质量因数。接下来,我们模拟具有连接到表面的生物识别元件的结构。第三步是将官能化的微管模拟以模拟与目标分析物的相互作用。在每个步骤中,我们通过对生物释认元件和分析物的折射率的经验数据导出透射光谱,电场分布和耦合效率,以及波长依赖性。最后,使用FEM结合优化算法结合组成材料特性和识别化学来优化微孔的几何形状,以最大化集成生物传感器的灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号