首页> 外文会议>HTD-vol.376-2; ASME(American Society of Mechanical Engineers) International Mechanical Engineering Congress and Exposition; 20051105-11; Orlando,FL(US) >PERFORMANCE COMPARISON OF NUMERICAL PROCEDURES FOR EFFICIENTLY SOLVING A MICROSCALE HEAT TRANSPORT EQUATION DURING FEMTOSECOND LASER HEATING OF NANOSCALE METAL FILMS
【24h】

PERFORMANCE COMPARISON OF NUMERICAL PROCEDURES FOR EFFICIENTLY SOLVING A MICROSCALE HEAT TRANSPORT EQUATION DURING FEMTOSECOND LASER HEATING OF NANOSCALE METAL FILMS

机译:毫微米级激光薄膜加热过程中有效求解微尺度传热方程的数值程序的性能比较

获取原文
获取原文并翻译 | 示例

摘要

An alternative discretization and solution procedure for implicitly solving a 3-D microscale heat transport equation during femtosecond laser heating of nanoscale metal films has been developed (Kunadian et al.). The proposed numerical technique directly solves a single partial differential equation, unlike other techniques available in the literature which splits the equation into a system of two equations and then apply discretization. The present paper investigates performance of its split and unsplit methods of solution via numerical experiments using Gauss— Seidel, conjugate gradient, generalized minimal residual and δ-form Douglas-Gunn time-splitting methods to compare the computational cost involved in these methods. The comparison suggests that the unsplit method employing δ-form Douglas-Gunn spatial time-splitting is the most efficient way in terms of CPU time taken to complete the simulation of solving the 3-D time dependent microscale heat transport equation.
机译:已经开发出了另一种离散化和求解程序,用于在飞秒激光加热纳米级金属膜的过程中隐式求解3-D微尺度热传递方程(Kunadian等人)。所提出的数值技术直接解决了单个偏微分方程,这与文献中的其他技术不同,该技术将方程分解为两个方程组,然后应用离散化。本文通过使用高斯—赛德尔,共轭梯度,广义最小残差和δ形式的道格拉斯·古恩时间分解方法进行数值实验,研究了其拆分和未拆分方法的性能,以比较这些方法的计算成本。比较表明,就完成3D时间相关的微尺度传热方程求解的仿真所需的CPU时间而言,采用δ形Douglas-Gunn空间时间分解的非分裂方法是最有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号