首页> 外文会议>Charging amp; infrastructure symposium 2018 >Towards High Specific Energies for Lithium-Ion Batteries: Overlithiated High Voltage Spinels as Cathode Material
【24h】

Towards High Specific Energies for Lithium-Ion Batteries: Overlithiated High Voltage Spinels as Cathode Material

机译:致力于锂离子电池的高比能:过锂化尖晶石作为阴极材料

获取原文
获取原文并翻译 | 示例

摘要

The high voltage spinel LiNi0.5Mnl.5O4 (LNMO) is one of the most promising active materials for future lithium ion battery (LIB) cathodes, as it has a high specific discharge energy and is free of cobalt. With its theoretical capacity of 147 mAh g-1 and a discharge plateau at ~ 4.7 V vs. Li/Li+, it delivers a specific energy of over 600 Wh kg-1 and an energy density of over 2500 Wh L-l on the material level. [1,2] Chemical lithiation of LNMO before preparing the electrode not only gives the chance of compensating active lithium losses at the anode side, but also for opening a path for cycling the cathode to lower voltages in a full cell to increase its specific energy even further. Admittedly, the mean voltage of the cells decreases slightly, but this is more than compensated by very high capacities. [3] In this work, the lithiation was accomplished by combining LNMO with stoichiometric amounts of metallic lithium (nLi / nLNMO = 0.25 to 1) in pentanol as solvent and boiling the mixture over night to achieve lithium contents of LixNi0.5Mnl.5O4 (x = 1.1 - 1.8). The lithium contents were detected by XRD and ICP-OES measurements. During lithiation, the crystal structure of the material is transformed from a cubic to a tetragonal phase, but the morphology of the particles does not change. Once de-lithiated electrochemically, there is nearly no difference between the overlithiated and the original material. Compensating the active lithium loss is vital for all cell chemistries and especially for high voltage materials. There are even more parasitic reactions taking place than in cells with lower cut-off voltages, and these reactions are often accompanied by active lithium loss. So even without cycling the cell towards lower voltages, the chemical lithiation can have a great benefit for the lifetime and specific energy of a LIB.
机译:高压尖晶石LiNi0.5Mn1.5O4(LNMO)是未来锂离子电池(LIB)阴极最有希望的活性材料之一,因为它具有高的比放电能并且不含钴。它的理论容量为147 mAh g-1,在相对于Li / Li +约为4.7 V时的放电平稳性,在材料水平上可提供600 Wh kg-1以上的比能和2500 Wh L-1以上的能量密度。 [1,2]在制备电极之前,先对LNMO进行化学锂化处理,不仅可以补偿阳极侧的活性锂损失,而且还可以为整个电池中的阴极循环至较低电压以增加其比能开辟一条道路。更深入。诚然,电池的平均电压会略有下降,但这远远超过了很高的容量所能弥补的。 [3]在这项工作中,锂化是通过将LNMO与化学计量的金属锂(nLi / nLNMO = 0.25至1)在戊醇中作为溶剂结合,并将混合物煮沸过夜以实现LixNi0.5Mnl.5O4的锂含量( x = 1.1-1.8)。通过XRD和ICP-OES测量来检测锂含量。在锂化过程中,材料的晶体结构从立方相转变为四方相,但颗粒的形态没有改变。一旦电化学脱锂,过锂化和原始材料之间几乎没有区别。补偿活性锂损失对于所有电池化学,尤其是高压材料至关重要。与具有较低截止电压的电池相比,发生的寄生反应甚至更多,这些反应通常伴随着活性锂的损失。因此,即使不将电池循环至更低的电压,化学锂化也可以大大提高LIB的寿命和比能。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Miinster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Miinster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Miinster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Miinster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany,Helmholtz Institute Miinster, IEK-12, Forschungszentrum Juelich GmbH, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Miinster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号