首页> 外文会议>International Conference on Mechanical Engineering and Mechanics vol.1; 20051026-28; Nanjing(CN) >Numerical Simulation of Micro-asperity Effect on the Hydrodynamic Lubrication
【24h】

Numerical Simulation of Micro-asperity Effect on the Hydrodynamic Lubrication

机译:微观粗糙性对流体动力润滑影响的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

Based on the Reynolds equation and hydrodynamic film thickness equations, numerical model of micro-asperity produced by laser surface texturing is setup to study the micro-asperity effect on the hydrodynamic lubrication performance. Cylinder shaped and crown shaped micro-pores are studied and several geometry parameters of micro-pores in sliding surface lubrication are investigated by multi-grid method. Full multi-grid V cycle method is introduced as the algorithm of solving numerical model. Full approximation scheme (FAS) is incorporated to speed up the film thickness calculation. From the numerical result, it can be derived that by introducing micro-asperity on one of two parallel surfaces, hydrodynamic film is achieved in the fluid domain, and the hydrodynamic performance of crown shaped micro-pores is better than the cylinder shaped. The maximum hydrodynamic pressure is found to occur at the depth of micro-pores is on around 1.0 μm. It is shown that the load carrying capability of hydrodynamic film is enhancing as the density of micro-pores increasing. The result also indicates that lubricating performance is more sensitive to the micro-pores density and depth than other factors such as micro-pores radius.
机译:基于雷诺方程和流体动力学膜厚方程,建立了激光表面纹理化产生的微细微颗粒的数值模型,以研究微细微颗粒对流体动力润滑性能的影响。研究了圆柱状和冠状微孔,并通过多网格方法研究了滑动表面润滑中微孔的几个几何参数。介绍了完全多网格V循环法作为求解数值模型的算法。完全近似方案(FAS)被纳入以加快薄膜厚度的计算。从数值结果可以得出,通过在两个平行表面之一上引入微粗糙性,在流体域中获得了流体动力膜,并且冠状微孔的流体力学性能优于圆柱状。发现最大的流体动力压力发生在微孔的深度约为1.0μm处。结果表明,随着微孔密度的增加,水动力膜的承载能力增强。该结果还表明,润滑性能对微孔密度和深度的影响比其他因素(例如微孔半径)更敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号