【24h】

Numerical Simulation and Experimental Study of TR Combustion System

机译:TR燃烧系统的数值模拟与实验研究

获取原文
获取原文并翻译 | 示例

摘要

TR(Three-Rapidity) combustion system was designed to replace the original deep cave ω combustion in 135-type diesel engine. It is combined of a deep cave ω combustion chamber with contractive throat, an oriented arc in the middle of chamber wall and a nozzle with 4 x Φ 0.36 orifices in conic section plus 1 x Φ 0.20 orifice in center. Three-dimensional numerical simulation of TR combustion system was completed by STAR-CD. Computation starts from intake valve close timing (140℃A BTDC) to 140鍭 ATDC. Based on the experiment results, the temperature is assumed to be 320K, 520K, 500K and 500K respectively corresponding to initial air, cylinder head, piston top and cylinder wall. And the initial pressure is 0.1MPa. The emphases of investigation are on the mixture formation and combustion process. It was proved that TR system. has 43.84 m2/s2 in the maximal turbulent kinetic energy, but the original ω system has only 8.478m2/s2 . The oriented arc on the chamber wall changes the airflow direction and forms a small anticlockwise eddy near the slope wall. It contributes to the great maximal turbulent kinetic energy. In ignition time, the high temperature is 1462K in TR system and 2095K in the original co system. In main combustion period, TR chamber has the high temperature in the center and the low temperature near the wall. The flame propagates from the center to the outside. The contractive throat of TR chamber guides the airflow direction and generates a strong turbulence even in late combustion period. The diffusive combustion duration get shorter and the soot significantly minimize. Experimental study shows that TR has low smoke emission in whole load conditions. NOX is lower than that of original engine except for the high load condition. TR combustion system has a promising application in diesel engine.
机译:设计了TR(三速)燃烧系统,以取代135型柴油机中原始的深穴ω燃烧。它由一个带收缩喉部的深孔ω燃烧室,一个位于燃烧室壁中央的定向弧和一个在圆锥截面上具有4 xΦ0.36孔口和中心1 xΦ0.20孔口的喷嘴组成。 STAR-CD完成了TR燃烧系统的三维数值模拟。计算从进气门关闭正时(140℃A BTDC)到140鍭ATDC。根据实验结果,假定温度分别为320K,520K,500K和500K,分别对应于初始空气,气缸盖,活塞顶和气缸壁。初始压力为0.1MPa。研究的重点是混合物的形成和燃烧过程。事实证明,TR系统。最大湍动能为43.84 m2 / s2,但是原始的ω系统只有8.478m2 / s2。腔室壁上的定向弧会改变气流方向,并在倾斜壁附近形成一个小的逆时针涡流。它有助于最大的湍流动能。在点火时间上,TR系统的高温为1462K,原始co系统的高温为2095K。在主燃烧期间,TR室的中心温度较高,壁附近温度较低。火焰从中心传播到外部。 TR室的收缩喉部引导气流方向,即使在燃烧后期也能产生强烈的湍流。扩散燃烧持续时间变短,烟灰明显减少。实验研究表明,TR在全负荷条件下的烟气排放较低。除高负荷条件外,NOX均低于原始发动机。 TR燃烧系统在柴油机中具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号