首页> 外文会议>IUPAC 10th International conference on novel materials and their synthesis: Book of abstracts >HIGH RATE CAPABILITY OF LITHIUM-RICH LAYERED Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2 CATHODE MATERIAL PREPARED FROM SIZE-REGULATED PRECURSOR FINE PARTICLES
【24h】

HIGH RATE CAPABILITY OF LITHIUM-RICH LAYERED Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2 CATHODE MATERIAL PREPARED FROM SIZE-REGULATED PRECURSOR FINE PARTICLES

机译:尺寸可调的前驱体细颗粒制备的富锂层状Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2阴极材料的高容量

获取原文
获取原文并翻译 | 示例

摘要

A Lithium-rich layered cathode material, Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2, was synthesized from size-regulated precursor nanoparticles, which were prepared by a reverse microemulsion technique. As seen in Fig. 1, the resulting material(EM) demonstrated a good cyclestability (50th cycle discharge capacity: 281 mA h g~(-1) at 20 mA g~(-1)) without any additional modifications or treatments and a high capacity retention (52%) even at 640 mA g~(-1) compared with the one (5% at 640 mA g~(-1)) obtained via a spray-drying synthesis(SD) as a reference. This article is the first report of trying to synthesize the lithium-rich layered cathode material exerting high rate capability by controlling the morphology and homogeneity of precursor particles themselves. Figure 1 Cell performances of Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2. (A) Rate capabilities evaluated at a given current density, and (B) capacity retention after 50 cycles at each current density from 20 to 640 mA g~(-1) vs. the current densities.
机译:由尺寸调控的前驱体纳米粒子合成了富锂的层状正极材料Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2,该纳米粒子通过反向微乳液技术制备。如图1所示,所得材料(EM)表现出良好的循环稳定性(第50次循环放电容量:在20 mA g〜(-1)时为281 mA hg〜(-1)),无需任何其他修改或处理,并且甚至在640 mA g〜(-1)时的容量保持率(52%),与通过喷雾干燥合成(SD)获得的容量保持率(640 mA g〜(-1)的5%)相比。本文是试图通过控制前驱体颗粒本身的形态和均匀性来合成具有高倍率性能的富锂层状阴极材料的第一篇报道。图1 Li_(1.2)Ni_(0.18)Mn_(0.59)Co_(0.03)O_2的电池性能。 (A)在给定电流密度下评估速率能力,(B)在20至640 mA g〜(-1)的每种电流密度与电流密度之间进行50个循环后的容量保持率。

著录项

  • 来源
  • 会议地点 Zhengzhou(CN)
  • 作者单位

    Research Institute for Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan;

    Research Institute for Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan;

    Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

    Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Suzhou University, No. 688, Moye Road, Suzhou;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium-rich layered cathode material; microemulsion; size-regulated precursor;

    机译:富锂层状阴极材料;微乳液尺寸调节前体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号