【24h】

Challenge of New Bio-technology for Reduction of Mycotoxin Contamination

机译:减少霉菌毒素污染的新生物技术的挑战

获取原文
获取原文并翻译 | 示例

摘要

Unlike model plant-microbe interactions determined by the "gene-for-gene" system, there are no known single dominant resistance genes related to Fusarium head blight (FHB) in wheat and barley. It is important to identify factors that contribute to virulence of the pathogen and resistance of the host plant. In addition to the high yield loss associated with FHB, the infected grains are often contaminated with mycotoxins trichothecenes and zearalenone (ZEN). We previously isolated Tri101, a biosynthetic and self-resistance gene of the causal pathogen Fusarium graminearum. Expression of Tri101 in transgenic cereals reduced virulence of the pathogen to some extent. Recently, we have cloned and characterized other candidate genes that may help to alleviate some of the problems associated with FHB. (1) Xylanase inhibitor gene (Triticum aestivum endo-β-1,4-xylanase inhibitor; TAXI) β-1,4-xylanase appears to be an important virulence factor for cereal pathogens. We have cloned new xylanase inhibitor genes, taxi101 and taxi102, from wheat and demonstrated their Fusarium-responsive expression. Interestingly, sequence comparison provided evidence of adaptive evolution in their coding regions, which is suggestive of protein-protein interaction between hosts and parasites. The adaptive selection may have stimulated diversification of taxi with different inhibition specificities to better counteract pathogen infection. (2) ZEN detoxifying gene (zhd101) Microorganisms are promising genetic resources of "remediation" for both natural (e.g., mycotoxins) and artificial (e.g., PCBs) toxic substances. We isolated a strain of Clonostachys rosea that irreversibly detoxifies ZEN and cloned the responsible gene zhd101. It was suggested that the genetically modified organisms carrying zhd101 are useful for detoxification of ZEN-contaminated stuffs.
机译:与通过“基因对基因”系统确定的模型植物-微生物相互作用不同,在小麦和大麦中,没有已知的与镰刀菌枯萎病(FHB)相关的单一显性抗性基因。识别导致病原体的毒力和宿主植物抗性的因素很重要。除了与FHB相关的高产量损失外,被感染的谷物还经常被霉菌毒素,曲霉毒素和玉米赤霉烯酮(ZEN)污染。我们先前分离了Tri101,这是病原性病原镰刀菌的生物合成和自抗性基因。 Tri101在转基因谷物中的表达在一定程度上降低了病原体的毒力。最近,我们已经克隆并鉴定了其他候选基因,可能有助于缓解与FHB相关的一些问题。 (1)木​​聚糖酶抑制剂基因(Triticum aestivumendo-β-1,4-xylanaseinhibitor; TAXI)β-1,4-木聚糖酶似乎是谷物病原体的重要毒力因子。我们从小麦中克隆了新的木聚糖酶抑制剂基因taxi101和taxi102,并证明了它们对镰刀菌的响应性表达。有趣的是,序列比较提供了在其编码区中适应性进化的证据,这表明宿主与寄生虫之间存在蛋白质-蛋白质相互作用。适应性选择可能以不同的抑制特异性刺激了出租车的多样化,以更好地抵抗病原体感染。 (2)ZEN解毒基因(zhd101)微生物是天然(例如,霉菌毒素)和人工(例如,PCBs)有毒物质“修复”的有前途的遗传资源。我们分离出了一种不可逆排毒的ZEN的玫瑰金梭菌菌株,并克隆了负责任的基因zhd101。有人建议携带zhd101的转基因生物可用于ZEN污染物质的解毒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号