首页> 外文会议>Liquid Crystals XI; Proceedings of SPIE-The International Society for Optical Engineering; vol.6654 >Using time-dependent density functional theory (TDDFT) in the design and development of near-IR dopants for liquid crystal device applications
【24h】

Using time-dependent density functional theory (TDDFT) in the design and development of near-IR dopants for liquid crystal device applications

机译:在液晶器件应用的近红外掺杂剂的设计和开发中,使用时变密度泛函理论(TDDFT)

获取原文
获取原文并翻译 | 示例

摘要

Computational chemistry provides unprecedented opportunities to predict the properties of new materials prior to synthesis. One such important property for optics and photonics applications is optical absorbance. The capability to accurately predict, prior to synthesis, the spectroscopic properties of a series of materials as a function of molecular structure would be an extremely powerful tool in the design and development of new liquid crystal materials, dyes, and dopants intended for use in devices for advanced optics and photonics applications. We have applied time-dependent density function theory (TDDFT) calculations for the first time in the prediction of the absorbance spectra of a series of nickel dithiolene near-infrared (IR) dye complexes with a wide variety of terminal functional groups that are designed to enhance their solubility and stability in liquid crystal host mixtures. The TDDFT method was used to compute the excited-state energies of an existing series of nickel dithiolenes with bulk solvent effects taken into account. Excellent agreement between the theoretical and experimental absorbance maxima was achieved for 14 known dyes with an exceptionally low mean absolute error of 0.033 eV. Calculations conducted on 4 new nickel dithiolene dyes predict that the addition of sulfur atoms to the side chains will increase the maximum absorbance wavelength by up to 160 nm. This improved computational method is being applied to the design and synthesis of highly soluble azobenzene-substituted transition metal dithiolene near-IR dyes that can undergo rapid and reversible photoinduced cis-trans isomerization. Such materials could show substantial promise as photoswitchable near-IR dopants for liquid crystal device applications in telecommunications, sensor protection, nonlinear optics, and laser systems.
机译:计算化学为合成之前预测新材料的性质提供了前所未有的机会。对于光学和光子学应用而言,如此重要的特性之一是光吸收率。在合成之前准确预测一系列材料的光谱性质与分子结构的关系的能力将成为设计和开发用于设备的新型液晶材料,染料和掺杂剂的极有力工具。适用于高级光学和光子学应用。我们首次将时变密度函数理论(TDDFT)应用到了一系列具有多种末端官能团的二硫代镍镍近红外(IR)染料配合物系列的吸收光谱预测中提高它们在液晶主体混合物中的溶解度和稳定性。 TDDFT方法用于计算考虑到整体溶剂效应的现有系列二硫代镍镍的激发态能。 14种已知染料的理论吸光度最大值和实验吸光度最大值之间达到极好的一致性,其平均绝对误差极低,为0.033 eV。对4种新的二硫代镍镍染料进行的计算预测,在侧链上添加硫原子将使最大吸收波长增加多达160 nm。这种改进的计算方法被应用于设计和合成高可溶性的偶氮苯取代的过渡金属二硫代近红外染料,该染料可以进行快速和可逆的光诱导的顺反异构化。这种材料作为光可开关的近红外掺杂剂,可用于电信,传感器保护,非线性光学和激光系统中的液晶器件应用,具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号