首页> 外文会议>Conference on Liquid Crystals >Using time-dependent density functional theory (TDDFT) in the design and development of near-IR dopants for liquid crystal device applications
【24h】

Using time-dependent density functional theory (TDDFT) in the design and development of near-IR dopants for liquid crystal device applications

机译:使用时间依赖性密度泛函理论(TDDFT)在液晶装置应用的近红外掺杂剂的设计和开发中

获取原文

摘要

Computational chemistry provides unprecedented opportunities to predict the properties of new materials prior to synthesis. One such important property for optics and photonics applications is optical absorbance. The capability to accurately predict, prior to synthesis, the spectroscopic properties of a series of materials as a function of molecular structure would be an extremely powerful tool in the design and development of new liquid crystal materials, dyes, and dopants intended for use in devices for advanced optics and photonics applications. We have applied time-dependent density function theory (TDDFT) calculations for the first time in the prediction of the absorbance spectra of a series of nickel dithiolene near-infrared (IR) dye complexes with a wide variety of terminal functional groups that are designed to enhance their solubility and stability in liquid crystal host mixtures. The TDDFT method was used to compute the excited-state energies of an existing series of nickel dithiolenes with bulk solvent effects taken into account. Excellent agreement between the theoretical and experimental absorbance maxima was achieved for 14 known dyes with an exceptionally low mean absolute error of 0.033 eV. Calculations conducted on 4 new nickel dithiolene dyes predict that the addition of sulfur atoms to the side chains will increase the maximum absorbance wavelength by up to 160 nm. This improved computational method is being applied to the design and synthesis of highly soluble azobenzene-substituted transition metal dithiolene near-IR dyes that can undergo rapid and reversible photoinduced cis-trans isomerization. Such materials could show substantial promise as photoswitchable near-IR dopants for liquid crystal device applications in telecommunications, sensor protection, nonlinear optics, and laser systems.
机译:计算化学提供了前所未有的机会,以预测合成前的新材料的性质。光学和光子应用应用的一个这样的重要属性是光学吸光度。在合成之前,可以准确地预测的能力是作为分子结构的函数的一系列材料的光谱性能将是设计和开发用于设备的新型液晶材料,染料和掺杂剂的设计和开发的极其强大的工具用于高级光学和光子学应用程序。我们已经施加了时间依赖性密度函数理论(TDDFT)计算,首次在预测一系列镍二硫代乙烯近红外(IR)染料配合物的吸光度谱预测,其具有设计为的各种末端官能团增强液晶宿主混合物中的溶解度和稳定性。使用TDDFT方法来计算现有系列镍二萜的激发态能量,其中考虑了本体溶剂效应。理论和实验吸光度之间的良好一致性达到14种已知的染料,具有出色的0.033eV的平均绝对误差。在4个新的镍二硫醇染料上进行的计算预测,向侧链加入硫原子将使最大吸光度波长增加至多160nm。这种改进的计算方法正在应用于高度可溶的偶氮苯取代的过渡金属二炔胺的设计和合成,其可以经历快速且可逆的光诱导的CIS-Trans异构化。这种材料可以显示为电信,传感器保护,非线性光学和激光系统中的液晶器件应用中的光织近红外掺杂剂的实质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号