首页> 外文会议>IAC;International Astronautical Congress >ON ADVANCED MOBILITY CONCEPTS FOR INTELLIGENT PLANETARY SURFACE EXPLORATION
【24h】

ON ADVANCED MOBILITY CONCEPTS FOR INTELLIGENT PLANETARY SURFACE EXPLORATION

机译:智能行星表面探测的高级移动概念研究

获取原文

摘要

In order to increase the scientific output of a rover mission it is very necessary to explore much larger surface areasreliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to developan intelligent mobile vehicle with an appropriate number of wheels, and having specific kinematics and locomotionsuspension depending on the operational terrain of the rover to operate. Moreover, a shift from a traditional bogieand wheel design to more agile wheel-legged combined systems seems to be beneficial in order to reach the goals.DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of lightweightmotion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and inincreasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailedmodelling, optimization, and simulation tasks. We have developed efficient software tools to simulate the rover driveabilityperformance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on slopes,where wheel and grouser geometry plays a dominant role. Moreover, rover design supported by means of optimizationtools from the very beginning is a must. Optimization aids can support the best engineering intuitions, that will optimizestructural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic costfunctions like mass and consumed energy minimization, static stability, and more. For self-localization and safe navigationthrough unknown terrain we make use of fast 3D stereo algorithms that were successfully used in terrestrial mobilesystems. The advanced rover design approach is applicable for lunar as well as Martian surface exploration purposes.
机译:为了增加漫游车任务的科学产出,非常有必要探索更大的地面区域 可靠地用更少的时间。这是机器人研究所结合机电一体化功能进行开发的主要动力 具有适当数量的车轮并具有特定运动学和运动性的智能移动车辆 悬挂取决于漫游车的运行地形来进行操作。而且,从传统转向架转向 为了实现目标,将车轮设计为更灵活的轮腿组合系统似乎是有益的。 DLR的机器人与机电一体化中心在开发轻量化领域的先进组件方面有着悠久的传统 运动驱动,智能和软操作以及熟练的手和工具,感知和认知,以及 增加任何一种机电一体化系统的自治性。整个设计受支持并基于详细信息 建模,优化和仿真任务。我们已经开发了有效的软件工具来模拟流动站的驾驶性能 在各种地形特征(例如,软沙和坚硬的岩石地形以及斜坡)上的性能, 砂轮和链条的几何形状起主要作用。此外,通过优化支持流动站设计 从一开始就必须使用工具。优化辅助工具可以支持最佳的工程直觉,从而可以优化 结构和几何参数,比较各种运动学悬挂概念,并利用实际成本 像质量和消耗的能量最小化,静态稳定性等功能。进行自我定位和安全导航 在未知的地形中,我们利用了在陆地移动中成功使用的快速3D立体算法 系统。先进的流动站设计方法适用于月球和火星表面探测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号