首页> 外文会议>International Symposium on Shock Waves >Reflected Detonation Waves: Comparing Theory to Pressure and Heat Flux Measurements
【24h】

Reflected Detonation Waves: Comparing Theory to Pressure and Heat Flux Measurements

机译:反射爆炸波:将理论与压力和热通量测量结果进行比较

获取原文

摘要

Gaseous detonations are of concern to engineers designing piping systems for chemical and nuclear processing facilities. Recently, engineers have also begun to explore the possibility of harnessing the impulse created by detonations for thrust. We consider the situation where a flame is created in a homogenous gaseous mixture before undergoing deflagration-to-detonation transition (DDT). This results in a detonation propagating along the axis a tube. The detonation induces a velocity in the gas, but at the tube walls the fluid is stationary due to the no-slip condition. Thus a momentum boundary layer is created that is thin at the detonation front, but grows with distance behind the detonation. A thermal boundary layer is also created due to the cold wall. These boundary layers are much smaller than the tube diameter and thus have minimal impact on the detonation propagation. However, when the detonation impinges upon an end wall, a reflected shock wave is created to satisfy the boundary condition of no flow at the tube end. This shock propagates back towards the location of ignition through the reaction products and unsteady flow field created by the detonation. The nature of the boundary layer behind the detonation has a substantial impact on the reflected shock wave through the potential of shock wave-boundary layer interaction. The present work seeks to understand the nature of the boundary layer growth behind a gaseous detonation front and the impact of this boundary layer on the reflected shock wave created when a detonation impinges upon an end wall through comparing analytic theory with measurements of heat flux and pressure alongside focused schlieren photography with nanosecond exposure times.
机译:气体爆轰是设计化学和核处理设施管道系统的工程师所关心的。最近,工程师们也开始探索利用爆炸产生的冲力推力的可能性。我们考虑这样一种情况,即在进行爆燃-爆轰过渡(DDT)之前,在均匀的气体混合物中产生了火焰。这导致爆震沿管子的轴线传播。爆炸引起气体中的速度,但是由于无滑动条件,流体在管壁处是静止的。因此,创建了一个动量边界层,该边界层在爆炸前很薄,但随着爆炸后的距离而增长。由于壁冷,也会产生热边界层。这些边界层比管直径小得多,因此对爆轰传播的影响最小。然而,当爆炸撞击端壁时,会产生反射的冲击波,以满足管端无流动的边界条件。这种冲击通过反应产物和由爆炸产生的不稳定的流场传播回点火位置。爆炸后边界层的性质通过冲击波与边界层相互作用的潜力,对反射的冲击波产生了重大影响。通过比较分析理论与热通量和压力的测量结果,本工作旨在了解气体爆炸前沿后面边界层生长的本质,以及该边界层对爆炸轰击端壁时产生的反射冲击波的影响。以及具有十亿分之一秒曝光时间的集中式schlieren摄影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号