首页> 外文会议>AIAA/CEAS aeroacoustics conference >Towards Understanding Aerofoils with Wavy Leading Edges Interacting with Vortical Disturbances
【24h】

Towards Understanding Aerofoils with Wavy Leading Edges Interacting with Vortical Disturbances

机译:旨在了解具有波浪形前缘与涡流干扰相互作用的机翼

获取原文

摘要

In this paper high fidelity numerical simulations of the 3D compressible Euler equations are utilised to investigate the acoustic-fluid dynamic interactions which occur when a vortical disturbance impinges on a thin aerofoil with a wavy leading edge (WLE). The simulations are based on a single vortex which encompasses the entire span, which allows for cleaner spectra and easier identification of the fundamental flow features. It is discovered that the WLE peak offers a large source strength reduction relative to the SLE baseline case, although quickly converges with increased WLE height (h) towards a constant level. Meanwhile at the root, the source strength remains similar to the SLE regardless of the geometry, which is surprising as both are perpendicular to the incoming flow. It is proposed that this discrepancy is created by a secondary horseshoe-like vortex system generated on the WLE aerofoil surface. Through induced velocity contributions this alters the upstream velocity field, weakening it at the peak, while simultaneously enhancing it at the root. Further to this, the vortex induced velocities also changes the shape of the incoming velocity front, leading to a more oblique interaction at the root. In this study the acoustic source strength mechanisms of the WLE are identified by carefully contrasting the upstream velocity field with the pressure fluctuations generated on the aerofoil surface. The horseshoe vortex system is also modelled through a semi-analytic approach based on the Biot-Savart law, which helps to confirm the proposed mechanisms.
机译:在本文中,利用3D可压缩Euler方程的高保真度数值模​​拟来研究当涡旋扰动撞击到具有波浪形前缘(WLE)的薄翼型上时发生的声流体动力相互作用。这些模拟基于围绕整个跨度的单个涡流,从而可以得到更清晰的频谱并更容易识别基本流量特征。已经发现,相对于SLE基线情况,WLE峰值提供了较大的源强度降低,尽管随着WLE高度(h)的增加迅速收敛到一个恒定的水平。同时,在根部,无论几何形状如何,源强度都保持与SLE相似,这令人惊讶,因为两者都垂直于输入流。提出这种差异是由在WLE翼型表面上产生的次级马蹄形涡流系统造成的。通过感应速度贡献,这改变了上游速度场,在峰值处减弱了它,同时在根部增强了它。除此之外,涡旋引起的速度还改变了入射速度前沿的形状,从而导致根部的相互作用更加倾斜。在这项研究中,通过仔细地将上游速度场与翼型表面产生的压力波动进行对比,确定了WLE的声源强度机制。马蹄涡流系统还通过基于Biot-Savart定律的半解析方法进行建模,这有助于确认所提出的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号