首页> 外文会议>AIAA/CEAS aeroacoustics conference >Numerical Simulation of Supersonic Twin-Jet Noise with High Order Finite Difference Scheme
【24h】

Numerical Simulation of Supersonic Twin-Jet Noise with High Order Finite Difference Scheme

机译:超音速双喷噪声高阶有限差分方案的数值模拟

获取原文

摘要

In this study, the noise generated from a supersonic circular twin-jet is simulated with a high order finite difference solver. The three dimensional compressible Favre filtered Navier-Stokes equations in Cartesian form are solved by computational Aeroacoustics methods. The Dispersion-Relation-Preserving scheme is used for spatial discretization and the low dissipation low dispersion Runge-Kutta method in 2N storage form is utilized for time marching. An adaptive artificial selective damping method is adopted for shock capturing. To handle the complex geometry of two closely spaced circular nozzles, the grid block interface flux reconstruction method for high order finite difference scheme is used. The supersonic twin-jet with Mach number 1.358 is simulated in this study. A single jet operating at the same condition is also computed for comparison. Based on the detailed analysis of the near sound field it is found that the two coupling jets are both oscillating in flapping mode, but out of phase with each other. Therefore a symmetrical pressure pattern, along both the lateral and vertical planes of the two nozzles, is generated. The dominant and first harmonic modes from the twin-jet are amplified dramatically comparing with the single jet. An increment of 14 dB for the dominant component is observed, while 20 dB for the first harmonic. The computed noise spectra are compared with the experimental data of Walker. The predicted frequencies and amplitudes of the dominant screech tone noises agree well with the experimental data. The pressure field of the jet plumes are analyzed with the Dynamic Mode Decomposition (DMD) method. The eigenvalues and most energetic eigen-modes are presented. The coupling mechanism of the twin-jet is analyzed based on the DMD results.
机译:在这项研究中,使用高阶有限差分求解器模拟了超音速圆形双喷嘴产生的噪声。通过计算航空声学方法求解笛卡尔形式的三维可压缩Favre滤波Navier-Stokes方程。色散关系保留方案用于空间离散化,2N存储形式的低耗散低色散Runge-Kutta方法用于时间行进。采用自适应的人工选择性阻尼方法进行冲击捕捉。为了处理两个紧密间隔的圆形喷嘴的复杂几何形状,使用了用于高阶有限差分方案的网格块界面通量重构方法。在这项研究中模拟了马赫数为1.358的超音速双喷头。还计算了在相同条件下运行的单个喷嘴以进行比较。基于对近声场的详细分析,发现两个耦合射流都以拍打模式振荡,但彼此异相。因此,沿着两个喷嘴的侧面和垂直平面产生对称的压力图案。与单喷流相比,双喷流的主谐波和一次谐波模态得到了极大的放大。观察到主要成分的增量为14 dB,而一次谐波的增量为20 dB。将计算出的噪声频谱与Walker的实验数据进行比较。主导的尖叫声噪声的预测频率和幅度与实验数据吻合良好。使用动态模式分解(DMD)方法分析了射流羽流的压力场。提出了特征值和大多数能量特征模式。基于DMD结果分析了双射流的耦合机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号