【24h】

Finite Volume Based Fluid-Structure Interaction Solver

机译:基于有限体积的流固耦合求解器

获取原文

摘要

Fluid-Structure Interaction (FSI) is an important topic that needs to be addressed during the design and analysis of air vehicles. The main components of an FSI analysis framework include: 1) computational fluid dynamics (CFD) solver, 2) computational structural dynamics (CSD) solver, 3) mesh deformation module, and 4) module for data transfer between computational fluid and structural solvers. In this study a loosely-coupled FSI methodology with all of the above components in a single framework has been developed. An in-house CFD solver has been used for the solution of the fluid dynamics equations. A structural solver has been developed by discretizing the linear elasticity equations using the finite-volume method that is identical to the method used in the in-house CFD solver. A novel and efficient Radial Basis Function (RBF) mesh deformation technique that is solved incrementally has been implemented. The developed FSI methodology is a general purpose one that can be applied to different types of three-dimensional problems and is capable of handling any mesh topology. The numerical compatibility between the CFD and CSD solvers implies same mesh requirements for both domains. This eliminates the interpolation errors during the data transfer between the two solvers. The proposed FSI approach has been tested on the case of flow-induced cantilever beam vibration. Four different flow inlet speeds have been analyzed. The predicted beam vibration has preserved the natural frequency for all cases. Furthermore, increasing the flow velocity increases the magnitude of the beam deflection, as expected. Moreover, two different structural densities were simulated. The results were validated against the FSI results produced by coupling a finite element structural solver with a finite volume fluid solver. The predicted structural response was found to be in a good agreement for both density values. The proposed FSI solver under-predicted the maximum deflection by 7% and over-predicted the vibration frequency by 0.16%.
机译:流体-结构相互作用(FSI)是在飞行器的设计和分析过程中需要解决的重要课题。 FSI分析框架的主要组件包括:1)计算流体动力学(CFD)求解器; 2)计算结构动力学(CSD)求解器; 3)网格变形模块;以及4)用于在计算流体和结构求解器之间进行数据传输的模块。在这项研究中,已经开发了一个松散耦合的FSI方法,在单个框架中具有上述所有组件。内部CFD求解器已用于求解流体动力学方程。通过使用与内部CFD求解器中使用的方法相同的有限体积方法离散化线性弹性方程,已开发出一种结构求解器。已经实现了一种新颖且有效的径向基函数(RBF)网格变形技术,该技术可以逐步解决。发达的FSI方法是一种通用方法,可以应用于不同类型的三维问题,并且能够处理任何网格拓扑。 CFD和CSD求解器之间的数值兼容性意味着两个域都需要相同的网格。这消除了两个求解器之间的数据传输期间的插值错误。提出的FSI方法已经在流动引起的悬臂梁振动的情况下进行了测试。已经分析了四种不同的流入口速度。预测的光束振动在所有情况下都保留了固有频率。此外,如预期的那样,增加流速会增加束偏转的幅度。此外,模拟了两种不同的结构密度。通过将有限元结构求解器与有限体积流体求解器耦合产生的FSI结果,对结果进行了验证。发现对于两个密度值,预测的结构响应都很好地吻合。拟议的FSI求解器将最大挠度低估了7%,将振动频率高估了0.16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号