首页> 中文学位 >龙格­库塔法数值求解基于有限体积的不可压Navier­Stokes方程和流固耦合问题
【6h】

龙格­库塔法数值求解基于有限体积的不可压Navier­Stokes方程和流固耦合问题

代理获取

目录

声明

第1章 绪 论

1.1 引言

1.2 N-S方程空间离散研究现状

1.3 N-S方程时域求解研究现状

1.4 动网格和流固耦合问题研究现状

1.5 湍流模拟研究现状

1.6 本文研究内容

第2章 不可压N-S方程的空间离散

2.1 动量守恒方程和连续性方程的空间离散

2.2 网格法向移动速度的计算

2.3 非交错网格上的动量插值

2.3.1 传统基于离散动量方程的插值

2.3.2 基于半离散动量方程的插值

2.3.3 动量插值格式的空间收敛性

2.4 流固耦合问题

2.5 本章小节

第3章 隐式龙格-库塔法求解静网格上的不可压N-S方程

3.1 微分代数问题中的传统隐式龙格-库塔法

3.2 隐式龙格-库塔法的收敛性和阶次条件

3.3 一种新隐式龙格-库塔方法

3.4 龙格-库塔内部阶段速度的边界条件

3.5 对角隐式龙格-库塔法的低内存实现

3.6 本章小节

第4章 分离式龙格-库塔法求解动网格上的不可压N-S方程

4.1 分离式龙格-库塔法的一般格式

4.2 分离式龙格-库塔法的收敛性

4.3 分离式龙格-库塔法的阶次条件

4.4 本章小节

第5章 龙格-库塔内部阶段离散不可压N-S方程的求解

5.1 静止网格上的离散不可压N-S方程

5.2 运动网格上的离散不可压N-S方程

5.3 两相流固耦合问题的离散方程

5.4 本章小节

第6章 数值试验

6.1 泰勒-格林漩涡

6.1.1 空间精度验证

6.1.2 时间精度验证

6.2 振动圆柱的绕流

6.2.1 雷诺数33强迫振动圆柱

6.2.2 雷诺数100自由振动圆柱

6.2.3 雷诺数3000~10000自由振动圆柱的大涡模拟

6.3 理想平板上的气动力

6.4 本章小节

第7章 结 论

7.1 空间离散方法

7.2 时间离散方法

7.3 数值算例的验证

7.4 方法的限制和未来工作的展望

致谢

参考文献

符号列表

攻读博士学位期间发表的论文及科研成果

展开▼

摘要

本文以求解非交错网格上不可压Navier-Stokes(N-S)方程以及多相(即由流体子系统及其动网格和结构子系统组成的)流固耦合问题为研究对象,以有限体积法为基础,研究探讨其中所涉及的数值求解问题和方法。不可压N-S方程属于低速流体(流速小于0.3马赫)运动控制方程,其一般形式在数学上为偏微分方程。针对N-S方程的数值求解可分为两步:首先,选用一种合适的离散方法(如有限差分法,有限体积法和有限元法)对方程在计算域内进行空间离散,从而得到计算域内各个离散点上的速度微分方程和压力代数方程,这些离散点构成了计算网格;然后,时域求解经空间离散得到的微分方程和代数方程系统,获得离散点上速度和压力在不同时刻的数值解。  经有限差分法、有限元法或交错网格上的有限体积法离散得到的不可压N-S方程可被视为指标2微分代数系统(数学上,同时包含微分方程和代数方程的系统被称为微分代数系统,并引入指标概念来区别不同类型的微分代数系统。常见的微分代数系统有指标1、指标2和指标3三种。指标数越高,其对应的微分代数系统越复杂)。但是,在工程应用中,非交错网格上的有限体积法被更广泛的应用。而经非交错网格上的有限体积法离散得到的不可压N-S方程是无法被直接认定为指标2微分代数系统。这是因为,在进行空间离散时,需要添加动量插值这一特殊操作来得到非交错网格单元界面上的离散速度场。单元界面上的离散速度场作为一个新参变量,与网格单元中心上的离散速度场和压力场,共同参与到N-S方程的空间离散过程中来。动量插值的插值格式最先由Rhie和Chow提出。在现有研究中,动量插值对空间离散后N-S方程的微分代数属性的影响从未被探究过。该影响若不明确,将无法有效分析时间离散方法在求解基于非交错网格和有限体积法的不可压N-S方程时的精度。此外,动量插值在的数值上实现的难易程度与时间离散格式的复杂程度也息息相关(例如,对于基于龙格-库塔法的时间离散格式,动量插值需消耗大量的计算资源)。  针对以上问题,本文首先提出了一种新的动量插值格式。该动量插值格式具有区别于其它格式的两个显著特点:1、插值对象是半离散(即仅经过空间离散)的N-S方程而非完全离散的方程;2、插值前,需对N-S方程中的对流项和扩散项按特定的格式进行拆分和重组,此特定格式依赖于定义在网格单元界面上的系数。采用本文新提出的动量插值格式,经空间离散后的不可压N-S方程可被严格认定为指标2的微分代数问题。本文还对新动量插值格式的精度、收敛性以及它能否在静止或运动网格上维持恒定均匀流的流场状态依次进行了检验。  依据以上提及的N-S方程数值求解步骤,本文的第二大研究问题为:时域求解经空间离散得到的微分方程和代数方程系统(即微分代数问题的求解)。这一求解步所运用的数值方法被称为时间离散方法(或时间积分方法)。N-S方程的计算域可以是静止的,也可以随边界的运动而变化。在后一种情况中,如果运动边界为可变形或移位的结构体与流体的接触面,那么在对N-S方程进行空间离散的同时还需要引入结构运动方程以及适应于运动边界的网格运动方程,这便是前述的多相流固耦合系统。通过时域求解该系统,可以获得流体和结构在不同时刻的响应。  常用的微分代数问题数值求解方法包括多步法和龙格-库塔法两大类。与多步法相比,龙格-库塔法具有精度高、稳定性强、可自适应时间步长和自启动等优点。值得一提的是,多步法和龙格-库塔法最初都是为了求解常微分问题而提出。微分代数问题与常微分问题具有不同的性质,且前者求解难度更高。同一数值方法在常微分问题和不同指标的微分代数问题中的局部精度和整体收敛阶次都有可能不同。现有研究还没有广泛认识到空间离散后的N-S方程属于微分代数问题而非常微分问题这一事实,许多研究默认数值方法在常微分问题中的局部和整体误差阶数与其在时域求解N-S方程时的局部和整体误差阶数一致。从应用角度来看,基于向后差分的多步法在开源和商业计算流体力学软件中被广泛运用,而龙格-库塔法在求解N-S方程中的应用研究仍然停留在学术层面。而且,学术界对于具体哪些类型的龙格-库塔法更适合于N-S方程的时域求解,以及如何简单高效的使用它们尚未达成共识。基于以上原因,本文以求解不可压N-S方程和流固耦合问题为目标,对现有的龙格-库塔法进行了改进和创新,进而构建具有低内存占用,易实现和高阶收敛等优点的数值求解方法。具体研究内容包括一下三个方面:  (1)以静止网格上的半离散不可压N-S方程为求解对象,将其视为特殊的指标2微分代数问题,提出了一种新的隐式龙格-库塔法。与传统方法相比,该方法能够显著提高计算效率以及压力数值解在非定常速度边界问题中的整体误差的收敛阶次。在所有隐式龙格-库塔法中,满足stiff-accurate条件的对角隐式龙格-库塔(DIRK)法因其计算量偏小等特点而更具有优势。当半离散不可压N-S方程的真实解存在且光滑,本文新提出的方法能够使DIRK格式求得的速度和压力数值解均按经典阶数(即DIRK法在常微分问题中的局部精阶数)收敛。在此方法的基础上,本文进一步构建了两类低内存占用的满足stiff-accurate条件的DIRK格式,从而减少内存消耗。  (2)以动网格上的半离散不可压N-S方程和多相流固耦合问题为求解对象,本文提出了一种特殊类型的分离式龙格-库塔法(命名为含显式子步的分离对角隐式龙格-库塔法,简称PEDIRK法)。该方法由一般的分离式龙格-库塔法衍变而来。PEDIRK法改善了现有对角隐式类型的龙格-库塔法在一般非线性指标2微分代数问题中的收敛性。分离式龙格-库塔法区别于一般的龙格-库塔法,这种方法通过引入一组额外的龙格-库塔系数和子步微分分量来实现更高精度的求解。同样,本文也为该方法提供了低内存占用且便于动量插值的数值格式,从而进一步提升计算效率。  (3)研究探讨不同类型的龙格-库塔方法导出的离散N-S方程求解问题。N-S方程对流项的非线性,以及速度与压力的耦合效应给方程的求解带来了困难。本文将研究点放在如何突破这些难点,建立能在计算效率、求解精度以及软件模块化三项因素中取得良好平衡的迭代求解算法。本文还讨论分析了离散N-S方程的求解残差对数值解整体误差收敛性的影响。  以上提出的龙格-库塔法和创建的具体格式不仅可以用于求解N-S方程和流固耦合问题,还可用于求解数学领域一般的微分代数问题。  最后,本文开展了三项数值算例,用以检验新提出的动量插值格式以及龙格-库塔法的精度和收敛性。第一组算例采用不同的边界条件和空间离散格式对若干雷诺数下二维的泰勒格林漩涡进行模拟。第二组算例为振动圆柱的绕流问题。其中,圆柱振动模式分为垂直来流向的简谐振动,以及顺来流向和垂直来流向的耦合自由振动。第三组算例为理想平板颤振导数识别。通过以上数值算例,本文所提出的一系列方法的收敛性都被一一验证。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号