首页> 外文会议>Electronic System-Integration Technology Conference >High Reliability Lead-free Alloys for Performance-Critical Applications
【24h】

High Reliability Lead-free Alloys for Performance-Critical Applications

机译:性能至关重要的高可靠性无铅合金

获取原文

摘要

Increased complexity of interconnection metallurgies, and additional demand for higher functionality and performance have been driving novel designs and electronics miniaturization. Consequently, higher I/O's density, finer pitches and smaller package sizes are also changing the requirements of Pb-free solder alloys. Hence, there is a need for solder alloys with thermal and mechanical reliability better than SAC305, but with lower, similar or higher melting temperatures, depending on the application. In this paper, we characterize various high reliability solder alloys using uniaxial tensile tests (at different temperatures and strain rates) and creep tests. Alloying additions are used for controlling the growth of intermetallic compounds and microstructure strengthening. Major additions impact the melting behavior and the bulk mechanical properties, whereas minor alloying additions influence the diffusion kinetics and have significant impact on their thermal reliability. The uniform distribution of intermetallics minimizes dislocation motion and deformation, resulting in alloy strengthening.Compared to SAC305, the high and ultra-high reliability alloys presented here show superior mechanical properties. The effect of temperature and strain rate on the mechanical behavior of these alloys are investigated by uniaxial tensile tests at room temperature and 150°C, and strain rates from 10^-4 to 5/s. Deformation during thermal cycling up to 150°C is expected to be controlled by creep, due to the high homologous temperature. Thus, high temperature creep test is used for estimating thermomechanical properties and longer reliability of these alloys in actual usage. As the melting behavior of these alloys cover a wide range of melting temperatures, they can be used in various applications, such as assembly of heat sensitive packages, automotive under-the-hood, semiconductors, LEDs and power electronics.
机译:互连冶金学越来越复杂,对更高功能和性能的额外需求也推动了新颖的设计和电子设备的小型化。因此,更高的I / O密度,更小的间距和更小的封装尺寸也改变了无铅焊料合金的要求。因此,根据应用,需要具有比SAC305更好的热和机械可靠性,但是具有更低,相似或更高的熔化温度的焊料合金。在本文中,我们使用单轴拉伸试验(在不同的温度和应变速率下)和蠕变试验来表征各种高可靠性焊料合金。合金添加物用于控制金属间化合物的生长和微观结构的强化。主要的添加物会影响熔化行为和整体力学性能,而次要的合金添加物会影响扩散动力学并对其热可靠性产生重大影响。金属间化合物的均匀分布使位错运动和变形最小化,从而导致合金强化。与SAC305相比,此处介绍的高可靠性和超高可靠性合金具有优越的机械性能。通过室温和150℃下的单轴拉伸试验,研究了温度和应变速率对这些合金力学性能的影响,应变速率为10 ^ -4至5 / s。由于较高的同源温度,预计在高达150°C的热循环过程中,形变可通过蠕变来控制。因此,高温蠕变测试用于估计这些合金在实际使用中的热机械性能和更长的可靠性。由于这些合金的熔化行为涵盖了广泛的熔化温度,因此它们可用于各种应用,例如热敏封装,汽车引擎盖,半导体,LED和电力电子设备的组装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号