首页> 外文会议>Electronic System-Integration Technology Conference >High temperature resistant interconnection for SiC power devices using Ni micro-electroplating and Ni nano particles
【24h】

High temperature resistant interconnection for SiC power devices using Ni micro-electroplating and Ni nano particles

机译:使用镍微电镀和镍纳米粒子的SiC功率器件的耐高温互连

获取原文

摘要

Recently there are high expectations for incorporating silicon carbide (SiC) devices as power modules in hybrid electric vehicles (HEV) and electric vehicles (EV). The need for new bonding technologies, which can deliver high-temperature thermal resistance that replaces solder bonding or Al wire bonding, has been strongly expected in order to maximize the performance of SiC power device. We developed a new micro-plating interconnection technology named Nickel Micro Plating Bonding (NMPB), which enables the interconnection in a narrow space between electrodes and SiC devices via our new lead frame formed in chevron shape. As for the bonding strength of NMPB, sufficient joint strength value is confirmed by shear test. We also newly proposed low-temperature nickel nanoparticle sintering to form die bonding connections. We have confirmed that bonding at a bonding temperature of 400 °C or lower is possible, and that it is a bonding having long-term high heat resistance. We implemented heat resistant mounting of SiC schottky barrier diode (SBD) on the TO247 type package and confirmed the I-V characteristics even after the high temperature storage at 300 °C without any significant degradation. We clarified that these methods had adequate potential as an advanced heat resistant package in comparison with conventional interconnections.
机译:最近,人们对将碳化硅(SiC)器件作为混合动力电动汽车(HEV)和电动汽车(EV)的功率模块寄予厚望。为了最大化SiC功率器件的性能,人们强烈期望需要能够提供高温热阻以替代焊料键合或Al引线键合的新键合技术。我们开发了一种新的微镀层互连技术,称为镍微镀层键合(NMPB),它可以通过我们的人字形形状的新型引线框架在电极和SiC器件之间的狭窄空间中实现互连。关于NMPB的结合强度,通过剪切试验确认了足够的结合强度值。我们还新提出了低温镍纳米粒子烧结以形成芯片键合连接的方法。我们已经证实,可以在400℃或更低的结合温度下进行结合,并且这是具有长期高耐热性的结合。我们在TO247型封装上实现了SiC肖特基势垒二极管(SBD)的耐热安装,并确认了I-V特性,即使在300°C的高温存储下也没有任何明显的劣化。我们澄清说,与常规互连相比,这些方法作为高级耐热封装具有足够的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号