首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >SIMULTANEOUS OPTIMIZATION OF IMPELLER BLADE LOADING DISTRIBUTION AND MERIDIONAL GEOMETRY FOR AERODYNAMIC DESIGN OF CENTRIFUGAL COMPRESSOR
【24h】

SIMULTANEOUS OPTIMIZATION OF IMPELLER BLADE LOADING DISTRIBUTION AND MERIDIONAL GEOMETRY FOR AERODYNAMIC DESIGN OF CENTRIFUGAL COMPRESSOR

机译:离心压缩机气动设计中叶轮叶片载荷分布和子午线几何的同时优化

获取原文

摘要

The present optimum design method has been advanced for simultaneous optimization of impeller blade loading distribution and meridional geometry. This is based on an aerodynamic design method and a genetic algorithm. The aerodynamic design method consists of two parts: a meridional viscous flow analysis and a two-dimensional inverse blade design procedure. In the meridional viscous flow analysis, an axisymmetric viscous flow is numerically analyzed on a two-dimensional grid to determine the flow distribution around the impeller and diffuser. Effects of blades onto the axisymmetric flow field are considered by a blade force modeling. In the inverse blade design procedure, 3-D impeller geometry can be obtained from the result of meridional viscous flow analysis and the predetermined blade loading distribution. In the optimization procedure, the total pressure ratio and adiabatic efficiency obtained from the meridional viscous flow analysis are employed as objective functions. As a constraint of the optimization, mass flux distribution at the impeller trailing edge is introduced in the evaluation procedure, in order to suppress the boundary layer development near the shroud, especiallv under low flow rate condition. Total performances and three-dimensional flow fields of centrifugal compressors have been analyzed by 3D-RANS simulations to certify effectiveness of the present design method. The 3D-RANS simulations and the flow visualization have been applied to a conventional centrifugal compressor and optimized design cases. From the analysis results, the performance enhancement of optimized designs is confirmed under low flow rate condition including design point. In addition to that, it is revealed that the constraint works effectively on the performance improvement. As a result, construction of the simultaneous optimization using the aerodynamic design method and the genetic algorithm is successfully achieved.
机译:为了同时优化叶轮叶片载荷分布和子午线几何形状,已经提出了当前的最佳设计方法。这基于空气动力学设计方法和遗传算法。空气动力学设计方法包括两部分:子午粘性流分析和二维反叶片设计程序。在子午粘性流分析中,在二维网格上对轴对称粘性流进行数值分析,以确定叶轮和扩散器周围的流分布。叶片力模型考虑了叶片对轴对称流场的影响。在逆叶片设计过程中,可以从子午粘性流分析和预定叶片载荷分布的结果中获得3-D叶轮的几何形状。在优化过程中,将从子午粘性流分析中获得的总压力比和绝热效率用作目标函数。作为优化的约束,在评估过程中引入了叶轮后缘的质量通量分布,以抑制在低流量条件下,尤其是在护罩附近的边界层的发展。离心压缩机的整体性能和三维流场已通过3D-RANS仿真进行了分析,以证明本设计方法的有效性。 3D-RANS模拟和流动可视化已应用于常规离心压缩机和优化的设计案例。从分析结果可以确认,在包括设计点在内的低流量条件下,优化设计的性能得到了提高。除此之外,还揭示了约束对性能改进有效地起作用。结果,成功地实现了使用空气动力学设计方法和遗传算法的同时优化的构造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号