首页> 外文会议>International Conference on Electrical and Control Engineering >Structural Surface of Mould Softness Abrasive Flow Precision Polishing Machining Method Based on VOF
【24h】

Structural Surface of Mould Softness Abrasive Flow Precision Polishing Machining Method Based on VOF

机译:基于VOF的模具软度磨料流结构精密抛光加工方法

获取原文

摘要

Aiming to improve the surface roughness of precision mould structural surface in finish machining, a new mould structural surface no-tool precision polishing method based on softness abrasive flow was brought forward. Dynamical model of softness abrasive flow in bound flow oriented to mould structural surface precision machining was established based on liquid-solid two-phase flow coupling theory and a continuous media theory. By the numerical simulation of softness abrasive flow field in the micro-channel, zigzag micro-channel was taken as the research object, by using standard k-ε turbulent model and volume of fluid model (VOF). The simulation results show that increase the entrance speed will improve the chance that is softness abrasive flow colliding with the wall, and it will improve the abrasive flow maching (AFM) efficiency, but the effect of finish machining will be declined. In addition, the results also show that the structure of channel has a great influent on abrasive flow machining. When diameter is 2 mm, the micro-channel with the entrance velocity is 10 mȂ2;s-1, the turbulent kinetic energy is 0.4 m2Ȃ2;s-2 and the turbulent dissipation rate is 19.8 m2Ȃ2;s-3 in that condition axial of velocity and turbulent distributed more uniformly, and more machining efficiency and texture patterns of surface are obtained.
机译:为了提高精密模具结构表面精加工的表面粗糙度,提出了一种基于软性磨料流的新型模具结构表面免工具精密抛光方法。基于液固两相流耦合理论和连续介质理论,建立了面向模具结构表面精密加工的束缚流动中软性磨料流动力学模型。通过对微通道中柔软磨料流场的数值模拟,采用标准的k-ε湍流模型和流体体积(VOF),以之字形微通道为研究对象。仿真结果表明,提高入口速度将增加柔软磨料流与壁碰撞的机会,并提高磨料流加工(AFM)的效率,但精加工的效果会下降。此外,结果还表明,通道的结构对磨料流加工有很大的影响。当直径为2 mm时,进入速度为10mȂ2; s-1的微通道,在该条件下轴向运动的条件下,湍动能为0.4m2Ȃ2; s-2,湍流耗散率为19.8m2Ȃ2; s-3。速度和湍流分布更均匀,获得了更高的加工效率和表面纹理图案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号