首页> 外文会议>SPWLA annual logging symposium;Society of Petrophysicists and Well Log Analysts, inc >BOREHOLE ACOUSTIC IMAGING USING 3D STC AND RAY TRACING TO DETERMINE FAR-FIELD REFLECTOR DIP AND AZIMUTH
【24h】

BOREHOLE ACOUSTIC IMAGING USING 3D STC AND RAY TRACING TO DETERMINE FAR-FIELD REFLECTOR DIP AND AZIMUTH

机译:使用3D STC和射线跟踪的孔声成像来确定远场反射器的倾角和方位角

获取原文

摘要

A new sonic imaging technique uses azimuthalreceivers to determine individual reflector locationsand attributes such as the dip and azimuth offormation layer boundaries, fractures, and faults.From the filtered waveform measurements, anautomatic time pick and event localizationprocedure is used to collect possible reflectedarrival events. An automatic ray tracing and 3Dslowness time coherence (STC) procedure is usedto determine the ray path type of the arrival eventand the reflector azimuth. The angle of incidence ofthe reflected arrival is related to the relative dip, andthe moveout in 3D across the individual sensors isrelated to the azimuthal orientation of the reflector.This information is then used to produce a 3Dstructural map of the reflector which can be readilyused for further geomodeling.This new technique addresses several shortcomingsin the current state-of-the-art sonic imagingservices within the industry. Similar to seismicprocessing, the current sonic imaging workflowconsists of iteratively testing migration parametersto obtain a 2D image representing a plane in linewith the desired receiver array. The image is theninterpreted for features, which is often subjective innature and does not directly provide quantitativeresults for the discrete reflections. The techniquepresented here, besides providing appropriateparameter values for the migration workflow,further complements the migration image byproviding dip and azimuth for each event that canbe used in further downstream boundary ordiscontinuity characterization.A field example is presented from the Middle Eastin which a carbonate reservoir was examined usingthis technique and subsequently integrated withwellbore images to provide insight to the structuralgeological setting, which was lacking seismic datadue to surface constraints. Structural dips werepicked in the lower zone of the main hole and usedto update the orientation of stratigraphic well topsalong the well trajectory. 3D surfaces were thencreated and projected from the main hole to thesidetrack to check for structural conformity. One ofthe projected surfaces from the main hole matchedthe expected depth of the well top in the sidetrackbut two were offset due to the possible presence ofa fault. This was confirmed by parallel evaluationof the azimuthal sonic imaging data acquired in themain hole that showed an abrupt change in therelative dip of reflectors above and below thepossible fault plane using the 3D STC and raytracing. Dip patterns from both wells showed a drageffect around the offset well tops, furtherconfirming the presence of a fault. A comparison ofthe acquired borehole images pinpointed the depthand orientation of the fault cutting both wells toexplain the depth offset of the projected 3D well topsurfaces.
机译:一种新的声波成像技术使用方位角 接收器确定各个反射器的位置 和属性,例如倾角和方位角 地层边界,裂缝和断层。 从滤波后的波形测量中, 自动时间选择和事件本地化 该程序用于收集可能的反映 到达事件。自动光线追踪和3D 使用慢速时间相干(STC)程序 确定到达事件的射线路径类型 和反射器的方位角。入射角 反射的到来与相对倾角有关,并且 各个传感器在3D中的偏移量是 与反射器的方位角有关。 然后,此信息将用于生成3D 反射器的结构图可以很容易地 用于进一步的地理建模。 这项新技术解决了几个缺点 在当前最先进的声波成像中 行业内的服务。类似于地震 处理,当前的声波成像工作流程 包含迭代测试迁移参数 获得代表直线平面的2D图像 与所需的接收器阵列。然后是图像 解释特征,这通常是主观的 性质,并不直接提供定量 离散反射的结果。技术 在这里介绍,除了提供适当的 迁移工作流程的参数值, 通过以下方式进一步完善迁移映像 为每个事件提供倾角和方位角 用于进一步的下游边界或 不连续性表征。 中东有一个实地例子 其中使用碳酸盐岩储层进行了检查 这项技术,随后与 井眼图像以提供对结构的洞察力 缺乏地震数据的地质环境 由于表面的限制。结构性下降 在主孔的下部区域拾取并使用 更新地层井顶的方向 沿井眼轨迹。然后是3D表面 从主孔创建并投影到 侧向检查结构一致性。之一 主孔的投影面匹配 井道中井顶的预期深度 但由于可能存在两个而被抵消了 一个错误。平行评估证实了这一点 采集的方位声成像数据 主孔显示出突然的变化 反射器在上方和下方的相对倾角 使用3D STC和射线的可能断层平面 追踪。两口井的浸入模式都显示出阻力 偏移井口周围的影响,进一步 确认故障的存在。比较 所采集的井眼图像精确指出了深度 断层切割的方向和方向 解释预计的3D井顶的深度偏移 表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号