首页> 外文会议>Hypervelocity Impact Symposium >SPH Modeling Improvements for Hypervelocity Impacts
【24h】

SPH Modeling Improvements for Hypervelocity Impacts

机译:SPH模拟超细性影响的改进

获取原文

摘要

Smoothed Particle Hydrodynamics (SPH) are often used to model solid bodies undergoing large deformation during hypervelocity impacts due to the ability of the method to handle distortion without the mesh entanglement issues posed by other Lagrangian discretizations such as the finite element method. Rather than using mesh connectivity, SPH uses a kernel function and performs smoothed integration over nearest neighbors to enforce the conservation laws of continuum dynamics. A number of improvements to the formulation have been proposed to increase stability and accuracy of the results. Despite such improvements, the performance of the SPH method is limited by the way in which boundary conditions are applied. Deficiency in the SPH field near solid boundaries is a shortcoming inherent to the formulation resulting in an inaccurate representation of contact mechanics during an impact event. To address this, the first part of this work focuses on improving SPH contact by treating the particles as if they were nodes in a finite element mesh. We investigate the effect of distributing contact loads across free surfaces using a Lagrange multiplier scheme. In addition, we propose a method for improving the initial distribution of Lagrangian particle mass and evaluate its effective on pressure waves traveling through a body. There is also potential to improve SPH modeling during non-uniform deformation resulting from impact. As deformation occurs, compressive forces cause SPH particle density to increase in the impact direction and decrease perpendicular to the impact. This can reduce accuracy in the perpendicular plane as the spatial resolution is coarsened. In the most extreme cases, numerical fracture can occur when the particles disperse to the degree that immediate neighbors are no longer recognized. We demonstrate the use of an ellipsoid kernel method, allowing the kernel to deform anisotropically with the particle field to maintain resolution and prevent numerical fracture. We discuss the implications of the method with respect to hypervelocity impacts, and compare results with baseline output obtained using a typical spherical kernel to evaluate its effectiveness.
机译:平滑的粒子流体动力学(SPH)通常用于在超高度影响期间模拟经历大变形的固体,因为该方法处理失真的能力而没有由其他拉格朗日离散化诸如有限元方法的其他拉格朗日离散化的网眼纠缠问题。不使用网格连接,SPH使用内核函数,并在最近的邻居上执行平滑集成,以强制执行连续动态的保护规律。已经提出了对制定的许多改进,以提高结果的稳定性和准确性。尽管存在这种改进,但SPH方法的性能是通过应用边界条件的方式受到限制的。固体边界附近的SPH场的缺陷是制剂所固有的缺点,导致在冲击事件期间接触机构的不准确表示。为了解决这个问题,这项工作的第一部分侧重于通过处理粒子来改善SPH触点,好像它们是有限元网格中的节点。我们使用拉格朗日倍增器方案调查分配接触载荷跨自由表面的效果。此外,我们提出了一种提高拉格朗日粒子质量初始分布的方法,并评估其在穿过身体的压力波的有效波。还有可能在撞击产生的非均匀变形期间改善SPH模型。由于变形发生,压缩力引起SPH颗粒密度以增加碰撞方向并垂直于撞击减少。随着空间分辨率粗糙,这可以降低垂直平面中的精度。在最极端的情况下,当颗粒分散到不再识别即时邻居的程度时,可以发生数值骨折。我们证明了使用椭球内核法的使用,使核各向异性地用粒子区域变形以保持分辨率并防止数值骨折。我们讨论了方法对超高速影响的影响,并将结果与​​使用典型的球形内核获得的基线输出进行比较,以评估其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号