首页> 外文会议>ASME Fluids Engineering Division Meeting >ANALYTICAL MODEL OF POST-IMPACT DROPLET SPREADING ON A MICRO-PATTERNED SUPERHYDROPHOBIC SURFACE WITH SURFACE SLIP
【24h】

ANALYTICAL MODEL OF POST-IMPACT DROPLET SPREADING ON A MICRO-PATTERNED SUPERHYDROPHOBIC SURFACE WITH SURFACE SLIP

机译:用表面滑动微观型超疏水表面展开后辐射液滴的分析模型

获取原文

摘要

Several analytical models exist to predict droplet impact behavior on superhydrophobic surfaces. However, no previous model has rigorously considered the effect of surface slip on droplet spreading and recoiling that is inherent in many super-hydrophobic surfaces. This paper presents an analytical model that takes into account surface slip at the solid-fluid interface during droplet deformation. The effects of slip are captured in terms that model the kinetic energy and viscous dissipation and are compared to a classical energy conservation model given by Attane et al. and experimental data from Pearson et al. A range of slip lengths, Weber numbers, Ohnesorge numbers, and contact angles are investigated to characterize the effects of slip over the entire range of realizable conditions. We find that surface slip does not influence normalized maximum spread diameter for low We but can cause a significant increase for We > 100. Surface slip affects dynamical parameters more profoundly for low Oh numbers (0.002 - 0.01). Normalized residence time and rebound velocity increase as slip increases for the same range of We and Oh. The influence of slip is more significantly manifested on normalized rebound velocity than normalized maximum spread diameter. Contact angles in the range of 150° - 180° do not affect impact dynamics significantly.
机译:存在几种分析模型以预测超疏水表面上的液滴冲击行为。然而,以前的模型严格考虑了表面滑移对液滴扩散和重塑的效果,这些液滴在许多超级疏水表面中固有。本文介绍了一个分析模型,该模型在液滴变形期间在固体流体界面处考虑表面滑动。以旨在为动能和粘性耗散的术语捕获滑动的影响,并与Attane等人提供的经典节能模型进行比较。来自Pearson等人的实验数据。调查了一系列滑动长度,韦伯号,OHNESORGE号码和接触角,以表征滑动在整个可实现条件范围内的影响。我们发现表面滑移不会影响低温的归一化最大扩展直径,但可能导致我们> 100的显着增加。表面滑移对低OH数(0.002 - 0.01)影响动态参数。正常化停留时间和回弹速度随着滑动的增加而增加,我们和哦。滑动的影响比归一化的回弹速度更显着表现在归一化的回弹速度之上,而不是归一化的最大扩展直径。 150° - 180°范围内的接触角不会显着影响冲击动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号