首页> 外文会议>International Symposium on Material Chemistry in Nuclear Environment >Corrosion and compatibility of structural materials in liquid lead alloys
【24h】

Corrosion and compatibility of structural materials in liquid lead alloys

机译:液体铅合金中结构材料的腐蚀与相容性

获取原文

摘要

The paper describes investigations of the behavior of structural materials in both eutectic lead alloys, Pb-17Li as the liquid breeder within the European WCLL-concept for Fusion Reactors and Pb-55Bi as a possible spallation target and coolant of future Accelerator Driven Systems (ADS) for the transmutation of minor actinides and long-lived fission products from nuclear waste. Ferritic-martensitic steels of the 8-10 wt/-% Cr type are considered as structural materials for the use in liquid Pb-17Li at temperatures up to 500 °C. Steels like MANET I, Optifer, F82H-mod. and EUROFER are investigated in the flowing liquid metal over a long period of time. Due to the specific physical chemistry of Pb-17Li, dissolution corrosion is the major corrosion mechanism of iron-based alloys. No oxide formation on steel surfaces can occur due to the very low oxygen potential in Pb-17Li. Therefore, only coatings could be a solution to minimize corrosion effects, at medium (500 °C) and higher operational temperatures (650 °C) of advanced blanket concepts. Ferritic-martensitic and austenitic steels are considered as potential structural materials for ADS application, too. But the high nickel solubility in Pb-55Bi limits the use of unprotected austenitic steels to temperatures of about 400 °C. Because of the much higher oxygen potential of Pb-55Bi, a totally different strategy of minimizing corrosion must be applied. By using active oxygen control, a desired oxygen activity (concentration) will be adjusted in the liquid metal via gas phase equilibrium. If the oxygen activity of the liquid metal is set in the right "window" of the corresponding thermodynamic properties, a controlled formation of oxide layers on the steel surfaces will be found. These in-situ formed oxides can act as corrosion barriers and make the use of high-nickel alloys possible, even at temperatures of around 600 °C.
机译:本文描述了对共晶铅合金,PB-17LI作为欧洲WCLL-概念中的液体种植者的结构材料的行为的研究,用于融合反应器和PB-55BI作为未来加速器驱动系统的可能的介质目标和冷却剂(广告)对于核废料的轻微散光和长期裂变产物的嬗变。 8-10wt / - %Cr型的铁素体 - 马氏体钢被认为是在高达500℃的温度下使用液体Pb-17li的结构材料。钢铁等刀叉I,Optifer,F82H-Mod。在很长一段时间内,在流动的液体金属中调查了Eurofer。由于PB-17LI的特定物理化学,溶解腐蚀是铁基合金的主要腐蚀机理。由于PB-17LI中的极低氧气电位,钢表面上的氧化物形成可能不会发生。因此,只有涂层可以是最小化耐腐蚀效应,在高级毯子概念的介质(500°C)和更高的操作温度(650°C)中的溶液。铁素体 - 马氏体和奥氏体钢也被认为是ADS应用的潜在结构材料。但是PB-55BI中的高镍溶解度限制了未受保护的奥氏体钢的使用,以约400℃的温度。由于PB-55BI的氧气潜力较高,必须应用最小化腐蚀的完全不同的策略。通过使用活性氧气控制,将通过气相平衡在液态金属中调节所需的氧活性(浓度)。如果液态金属的氧活性设定在相应热力学性质的右“窗口”中,则将找到钢表面上的氧化物层的受控形成。这些原位形成的氧化物可以充当腐蚀屏障并使能够使用高镍合金,即使在约600℃的温度下也可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号