首页> 外文会议>International Conference on Fluid Sealing >Revisiting soft micro-elastohydrodynamic lubrication: A FEM-based multi-scale approach for modeling radial lip seal friction
【24h】

Revisiting soft micro-elastohydrodynamic lubrication: A FEM-based multi-scale approach for modeling radial lip seal friction

机译:重新探测软微弹性动力学润滑:一种基于FEM的多尺度方法,用于造型径向唇缘摩擦

获取原文

摘要

A finite element-based deterministic multi-scale soft micro-elastohydrodynamic radial lip seal lubrication model has been set up comprising finite deformations of the elastomer surface asperities, inter-asperity cavitation and coupling of frictional heating, lubricant film temperature and lubricant viscosity. This lubrication approach essentially relies on the assumption that the lubrication of soft rough surfaces can be described by micro- or submicron-scale soft elastohydrodynamic (soft-EHL, i.e. isoviscous-elastic) lubrication at the asperity level. The overall friction thus entirely originates from the lubricant: in addition to the viscous friction contribution of the oil-filled surface roughness (meso-scale), viscous shear stresses resulting from the thin under-asperity soft-EHL oil films (submicron-scale) contribute significantly to the overall friction. The lubrication model is set up using the FEM-based multiphysics code ELMER utilizing a hydrodynamically representative sinusoidal roughness model based on the measured micro-geometry of the seal lip surface. The computed seal friction agrees well with experimental results. Moreover, this revisited soft micro EHL mixed lubrication approach is obviously capable of giving a physically sound explanation of both lubricant film formation as well as the frictional characteristics of lubricated soft rough surfaces.
机译:已经建立了有限元的确定性多尺度软微弹性动力学径向唇缘润滑模型,包括弹性体表面粗糙的有限变形,摩擦加热的间隙空穴,润滑膜温度和润滑剂粘度的耦合。这种润滑方法基本上依赖于假设软粗糙表面的润滑可以通过微型或亚微粒软弹性流体动力学(软-eH1,即氨基次弹性)润滑在粗糙度水平上描述。因此,整体摩擦完全来自润滑剂:除了粘性表面粗糙度(中间尺度)的粘性摩擦贡献之外,由薄的抑制欠素软 - EHL油膜(亚微米级)产生粘性剪切应力对整体摩擦有重大贡献。利用基于密封唇表面的测量的微观几何形状的流体动力学代表性正弦粗糙度模型建立润滑模型。计算的密封摩擦与实验结果很好。此外,该重新致介绍的软微型EHL混合润滑方法显然能够对润滑油膜形成的物理声音,以及润滑软粗糙表面的摩擦特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号