首页> 外文会议>Workshop on Geothermal Reservoir Engineering >High-Temperature Illite Dissolution Kinetics
【24h】

High-Temperature Illite Dissolution Kinetics

机译:高温illite溶出动力学

获取原文

摘要

Fluids cycled through producing or engineered geothermal reservoirs are likely to be out of chemical and thermal equilibrium with surrounding rock and mineral phases. Knowledge of the reactivity of common fracture-filling minerals is needed to predict longer-term flow and permeability sustainability in systems where fractures make up a large portion of the fluid pathways within the reservoir. Currently the majority of kinetic reaction data for many common fracture-associated phyllosilicate minerals has been obtained at lower temperatures, and extrapolation from these data may or may not accurately predict mineral kinetics at geothermal conditions. Here we present rate data and a preliminary kinetic rate formulation for illite dissolution over temperatures of 100-280 °C and pH of 3-9. We find that at temperatures of 100-280 °C, the variation of dissolution rate with pH is small for acid to mildly acidic solutions (3 < pH < 6), although rates increase more strongly at high pH (~9). The dependence of the rate itself on temperature also increases in more alkaline solutions. We compare our findings with the data and rate formulation provided from two lower-temperature studies (Kohler et al., 2003; Bibi et al., 2011) and determine that incorporation of reaction affinity is critical for accurate prediction of near-neutral pH rates at all temperatures. The data from the present study show a lessened influence of pH on dissolution rate for pH ≤ 6. For illite dissolution at temperatures above 100 °C, the experimental data support a rate expression: R_(illite,100C+) = {(A_N · e~(-E_N)/R·T) + (A_B · e~(-E_B)/R·T · a(OH~-)~m)}·{1 - (Q/K)~p} where A_N and A_B equal 5·10~(-11) and 5·10~(-5) mole m~(-2) s~(-1), E_N and E_B equal 14 and 44 kJ mole~(-1), m is equal to 0.3, and p is equal to 0.5. If, however, it is necessary to describe rates over a temperature range encompassing both geothermal reservoir temperatures and lower/colder conditions, we propose the following modifications to the rate expression given by Kohler et al. (2003): R_(illite,5-280C) = {(A_A · e~(-E_A)/R·T · a(H~+)~n) + (A_N · e~(-E_N)/R·T) + (A_B · e~(-E_B)/R·T · a(OH~+)~m)}·{1 - (Q/K)~1} with a decreased value of p equal to 0.06, A_A, A_N, and A_B equal to 5·10~(-5), 5·10~(-13), and 5·10~(-5) mole m~(-2) s~(-1), E_A equal to 46 kJ mole~(-1), and n equal to 0.34.
机译:通过生产或工程化地热储存器循环的流体可能与周围岩石和矿物相的化学和热平衡。需要了解常见的骨折填充矿物的反应性以预测裂缝在储层内部大部分流体途径的系统中的长期流动和渗透性可持续性。目前,在较低温度下获得了许多常见的骨折相关的神经硅酸盐矿物的大多数动力学反应数据,并且来自这些数据的外推或可能在地热条件下可以准确地预测矿物动力学。在这里,我们提供率数据和初步动力学率制剂,用于在100-280℃和pH的温度下的温度下溶解和3-9的pH值。我们发现,在100-280°C的温度下,酸pH的溶出速率的变化小于酸性,对于轻度酸性溶液(3 H <6),但速率在高pH(〜9)的高温下更强烈地增加。速率本身对温度的依赖性也增加了更多碱性溶液。我们将我们的调查结果与来自两个低温研究提供的数据和速率制定进行了比较(Kohler等,2003; Bibi等,2011)并确定反应亲和力的掺入对于准确预测近中立的pH速率至关重要在所有的温度下。来自本研究的数据显示pH对pH对pH≤6的溶出速率的影响。对于高于100℃的温度,实验数据支持速率表达:R_(illite,100c +)= {(a_n·e 〜(-e_n)/ r·t)+(a_b·e〜(-e_b)/ r·t·t·a(ob〜 - )〜m)}·{1 - (q / k)〜p} a_n和A_B等于5·10〜(-11)和5·10〜(-5)摩尔M〜(-2)S〜(-1),E_N和E_B等于14和44 KJ摩尔〜(-1),m是等于0.3,P等于0.5。然而,如果需要描述包含地热储层温度和更低/较冷的条件的温度范围内的速率,我们提出以下对Kohler等人提供的速率表达的修改。 (2003):R_(illite,5-280c)= {(a_a·e〜(-e_a)/ r·t·a(h〜+)〜n)+(a_n·e〜(-e_n)/ r· t)+(a_b·e〜(-e_b)/ r·t·t·a(OH〜+)〜m)}·{1 - (q / k)〜1}的p值降低等于0.06,a_a ,a_n和a_b等于5·10〜(-5),5·10〜(-13),5·10〜(-5)mol m〜(-2)s〜(-1),e_a等于到46 kJ鼹鼠〜(-1),n等于0.34。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号