首页> 外文会议>Workshop on Geothermal Reservoir Engineering >The Potential for On- and Off-shore High-enthalpy Geothermal Systems in the USA
【24h】

The Potential for On- and Off-shore High-enthalpy Geothermal Systems in the USA

机译:美国在岸上和离岸高焓地热系统的潜力

获取原文

摘要

In the USA, after more than 50 years of development, the electrical production from geothermal resources is overshadowed by that from wind and solar energy. Furthermore, most new geothermal developments involve only moderate temperatures in the range 250 to 300°C. In contrast, the development of higher-enthalpy, supercritical geothermal systems has obvious advantages: specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Recent numerical simulations indicate that supercritical water plays a key role both in transporting heat from magmatic intrusions and controlling the thermal structure of high temperature geothermal systems. Although suitable geothermal systems are restricted to young volcanic terrains, the potential for very favorable economic returns suggests that the USA should begin developing supercritical geothermal systems, both on and off-shore. An approach to mitigating the cost issue is being used by the Iceland Deep Drilling Project (IDDP), a consortium of industry, government and academia that is sharing the costs and broadening the scope of investigations of the economic feasibility of producing electricity from supercritical geothermal reservoirs. At Krafla in NE Iceland the IDDP developed the world's hottest geothermal well, capable of generating more than 36 MWe from superheated steam at a well-head temperature of ~450°C and pressures up to 14 MPa. In 2015-16 the IDDP will drill a second deep well designed to reach supercritical conditions at Reykjanes in SW Iceland, where the Mid-Atlantic Ridge comes on land. Plans for deep drilling to explore for much higher enthalpy geothermal resources are also underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan where the "Japan Beyond the Brittle Project" (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500 °C rocks. However, in the USA, although there is significant undeveloped potential for developing high-enthalpy geothermal systems on land in the western USA, Hawaii, and Alaska, there is no comparable national program to develop such resources. Furthermore, very large (multi-gigawatt size) hydrothermal systems lie offshore on the Gorda and Juan de Fuca ocean ridges. Such offshore resources will be expensive to develop but hold the promise of very large returns. There is need therefore to form a consortium to systematically explore, assess, and eventually develop high-enthalpy geothermal resources and to stimulate the necessary technical and engineering investigations.
机译:在美国,经过50多年的发展后,地热资源的电气产量被风和太阳能从风能和太阳能蒙上移动。此外,大多数新地热发育涉及250至300°C范围内的中等温度。相比之下,高焓的超临界地热系统具有明显的优点:特别是较高的温度,每个井产生更高的功率输出,从而需要更少的井,导致给定尺寸的发电厂的环境足迹。最近的数值模拟表明,超临界水在从岩浆侵入和控制高温地热系统的热结构中运输热量的关键作用。虽然合适的地热系统仅限于年轻的火山地形,但对非常有利的经济回报的潜力表明,美国应该开始开发超临界地热系统,无论是在岸上和离岸。冰岛深度钻探项目(IDDP),行业,政府和学术界联盟使用了减轻成本问题的方法,这些内容和学术界正在分享成本和扩大来自超临界地热水库生产电力的经济可行性的范围。在克拉夫拉在Ne冰岛,IDDP开发了世界上最热门的地热井,能够在高温温度下从过热的蒸汽产生超过36米的蒸汽,并压力高达14 MPa。 2015 - 16年,IDDP将钻取第二次深度良好的旨在在SW冰岛的Reykjanes达到超临界条件,其中大西洋山脊落在土地上。在新西兰陶博火山区(项目HAFES)的陶波火山地区也正在进行深入钻探的计划,并在日本东北地区的“日本超越脆性项目”(项目JBBP)是一项雄心勃勃的计划尝试在〜500°C岩石中创建EGS储库。然而,在美国,虽然在美国西部西部地区的土地上发展高焓地热系统具有显着的未开发潜力,但没有可比国家计划制定此类资源。此外,非常大的(多吉伐尺寸)水热系统在Gorda和Juan de Fuca海洋山脊上坐在海外。这种近海资源将昂贵,但持有非常大的回报的承诺。因此,需要组建联盟以系统地探索,评估,并最终开发高焓的地热资源,并刺激必要的技术和工程调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号