首页> 外文会议>Workshop on Geothermal Reservoir Engineering >Assessing Fracture Connectivity using Stable and Clumped Isotope Geochemistry of Calcite Cements
【24h】

Assessing Fracture Connectivity using Stable and Clumped Isotope Geochemistry of Calcite Cements

机译:使用稳定和块状同位素地球化学的方解石水泥评估断裂连通性

获取原文

摘要

Understanding flow path connectivity within a geothermal reservoir is a critical component for efficiently producing sustained flow rates of hot fluids from the subsurface. We present a new approach for characterizing subsurface fracture connectivity that uses clumped isotope (Δ_(47)) thermometry along with stable isotope analysis (δ~(18)O and δ~(13)C) and cold cathodoluminescence (CL) microscopy of fracture-filling calcite cements from a geothermal reservoir in northern Nevada. Calcite cement samples were derived from both drill cuttings and core samples taken at various depths from wells within the geothermal field. CL microscopy of some fracture filling cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements are related to fracture opening and fault slip. Variations in trace element composition indicated by the luminescence patterns reflect variations in the composition and source of fluids moving through the fractures as they opened episodically. Calcite δ~(13)C and δ~(18)O results also show significant variation among the sampled cements, reflecting multiple generations of fluids and fracture connectivity. Clumped isotope analyses performed on a subset of the cements analyzed for conventional δ~(18)O and δ~(13)C mostly show calcite growth temperatures around 150°C, which indicates a common temperature trend for the geothermal reservoir. However, calcite cements sampled along faults located within the well field showed both cold (19°C) and hot (226°C) temperatures. The anomalously cool temperature found along the fault, using estimates from clumped isotope thermometry, suggests a possible connection to surface waters for the geothermal source fluids for this system. This information may indicate that some of the faults within the well field are transporting meteoric water from the surface to be heated at depth, which then is circulated through a complex network of fractures and other faults.
机译:理解地热储层内的流动路径连接是有效地产生来自地下的热流体的持续流速的关键组件。我们提出了一种新方法,用于表征使用聚集同位素的地下断裂连通性(Δ_(47))温度以及稳定同位素分析(Δ〜(18)o和δ〜(13)c)和裂缝的冷阴极致发光(Cl)显微镜检查 - 从内华达州北部地热水库填充方解石水泥。源石水泥样品源自钻头切割和在地热场内的各种深度处采集的核心样品。一些裂缝填充水泥的Cl显微镜显示与骨折壁的条纹以及布发,表明水泥与骨折开口和故障滑动有关。由发光模式指示的痕量元素组合物的变化反映了通过骨折地移动穿过裂缝的液体组成和流体源的变化。方解石δ〜(13)C和δ〜(18)O结果也显示了采样的水泥中的显着变化,反映了多种多种流体和断裂连通性。对传统δ〜(18)O和δ〜(13)C分析的水泥的子集进行的团簇同位素分析主要显示在150°C约为150°C的方解石生长温度,这表明了地热储层的常见温度趋势。然而,沿着位于阱场内的故障采样的方解石水泥显示冷(19°C)和热(226°C)温度。使用来自Clumped同位素温度测量的估计,沿着故障发现的异常凉爽温度表明该系统的地热源流体的表面水有可能连接。该信息可以表明阱场内的一些故障是将易于在深度加热的表面传送的陨石水,然后通过复杂的裂缝和其他故障循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号