首页> 外文会议>International Conference on Atomic Processes in Plasmas >K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections
【24h】

K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

机译:热等离子体中的k-shell光谱:Stark Effect,Breit互动和QED校正

获取原文

摘要

The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,...) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1 snln'1' - 1s~2nl, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).
机译:通过显着效应的宽度扩大广泛用于推断等离子体中的电子密度和温度。 Stark-Effect计算通常依赖于原子数据(过渡率,能级,......)并不总是为隔离原子省略和/或有效。在这项工作中,我们首先在k-shell光谱的详细透明度代码SCO-RCG中展示了最新的开发。该方法适用于吉尔斯和佩纽斯的工作。忽略偶像和碰撞运算符中的非对角线术语,线路分布表示为与STARK组件相关联的VoIGT函数的总和。形式主义依赖于使用抛物型坐标和莱曼线的相对论精细结构,包括与具有相同主量子数N相关的量子状态相关的哈密顿矩阵来包括。 SCO-RCG码使得能够研究等离子体环境效应,微框架分布的影响,电子和离子温度之间的去耦和卫星线的作用(如Li-like 1 snln'1' - 1s〜2nl,是 - 状等)。原子结构计算达到了需要评估Brey Interaction和许多电子量子电动动力学(QED)贡献的准确性水平。虽然在氢原子中的QED效应(自能和真空偏振)进行了很多工作,但是任意数量的电子的情况更复杂。由于确切的分析解决方案不存在,因此已经使用了许多启发式方法来近似自能部分中的附加电子的筛选。我们比较了不同的方式包括原子结构代码(Slater-Condon,多配置Dirac-Fock等)的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号