首页> 外文会议>International Materials Research Congress >Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron
【24h】

Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron

机译:低碳先进高强度钢(AHSS)的热变形行为与硼微合金化

获取原文

摘要

This research work deals the influence of boron content on the high temperature deformation behavior of a low carbon advanced high strength steel (AHSS). For this purpose high temperature tensile and compression tests are carried out at different temperatures and constant true strain rates by using an Instron testing machine equipped with a radiant cylindrical furnace. Tensile tests are carried out at different temperatures (650, 750, 800, 900 and 1000°C) at a constant true strain rate of 0.001 s~(-1). Uniaxial hot compression tests are also performed over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10~(-3), 10~(-2) and 10~(-1) s~(-1)). In general, experimental results of hot tensile tests show an improvement of the hot ductility of the AHSS microalloyed with boron, although poor ductility at low temperatures (650 and 750°C). The fracture surfaces of the AHSS tested at temperatures showing the higher ductility (800, 900 and 1000°C) indicate that the fracture mode is a result of ductile failure, whereas in the region of poor ductility the fracture mode is of the ductile-brittle type failure. On the other hand, experimental results of hot compression tests show that both peak stress and peak strain tend to decrease in the AHSS microalloyed with boron, which indicates that boron generates a sort of solid solution softening effect in similar a way to other interstitial alloying elements in steel. Likewise, hot flow curves of the AHSS microalloyed with boron show an acceleration of the onset of dynamic recrystallization (DRX) and a delay of the recrystallization kinetics. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.
机译:该研究工作涉及硼含量对低碳先进高强度钢(AHSS)的高温变形行为的影响。为此目的,通过使用配备有辐射圆柱形炉的Instron试验机,在不同的温度和恒定的应变率下进行高温拉伸和压缩试验。在不同的温度(650,750,800,900和1000℃)下以0.001 s〜(-1)的不同温度(650,750,800,900和1000℃)进行拉伸试验。单轴热压缩试验也在宽范围内(950,1000,1050和1100°C)和恒定的真菌率(10〜(-3),10〜(-2)和10〜(-1) S〜(-1))。通常,热拉伸试验的实验结果显示出与硼微合金化的AHS的热延展性的改善,尽管在低温下的延展性差(650和750℃)。在显示较高延展性(800,900和1000℃)的温度下测试的AHS的断裂表面表明裂缝模式是延展性衰竭的结果,而在延展性不良的区域中,裂缝模式是延性脆性的类型失败。另一方面,热压缩试验的实验结果表明,峰值应力和峰值应变趋于降低与硼微合金化的AHS,这表明硼在类似的方式中产生了一种固体溶液软化效果,类似于其他间质合金化元素在钢中。同样地,与硼微合金化的AHS的热流曲线显示出动态再结晶(DRX)发作的加速度和再结晶动力学的延迟。结果在塑性变形和冷却过程中朝向奥氏体晶界和第二相粒子沉淀来讨论的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号