首页> 外文会议>BSME International Conference on Thermal Engineering >Numerical Study of Laminar Wall Jet with Transpiration and Moving Wall
【24h】

Numerical Study of Laminar Wall Jet with Transpiration and Moving Wall

机译:带蒸腾和移动壁层壁射流的数值研究

获取原文

摘要

Laminar wall jet is a unidirectional flow without any pressure gradient and is driven by its own momentum. This paper represents this phenomenon for two important cases-stationary wall without transpiration and moving wall with transpiration. Continuity and momentum equations have been developed for these two conditions. Similar to Glauerts theory, similarity transformation has been applied to find out the governing equation, a third order ordinary differential equation. Shooting method is applied to find out the proper boundary condition to solve the governing equation. Finally, an algorithm for 4th order Runge Kutta method has been augmented to find out the solution using MATLAB. As the jet moves forward in the case of a stationary wall without any transpiration, the maximum velocity, which is slightly greater than 0.4 m/s, occurs at a distance from the wall. The velocity curve for this case does not show any rapid change in the flow. But for the second case (moving wall with transpiration), the maximum velocity is obtained near the wall surface which is slightly greater than the wall velocity, 1.13 m/s. As the jet proceeds, due to suction, the velocity decreases rapidly. Again, the dominance of suction force forces the transverse velocity to achieve a lower value in the second case rather than in first case. The flow physics behind these scenarios is studied in detail in this work and is discussed for a range of operating conditions.
机译:层壁射流是一个没有任何压力梯度的单向流动,并且由其自身的动力驱动。本文代表了两个重要案例 - 固定壁而没有蒸腾的壁的墙壁的现象。对于这两个条件,已经开发了连续性和动量方程。类似于Glauerts理论,已经应用了相似性转换来找出控制方程,三阶常微分方程。拍摄方法应用于找出解决控制方程的适当边界条件。最后,已经增强了第4阶runge Kutta方法的算法,以查找使用MATLAB的解决方案。当射流在没有任何蒸腾的固定壁的情况下向前移动时,在没有任何蒸腾的情况下,略大于0.4m / s的最大速度在距壁的距离处发生。这种情况的速度曲线没有显示流程的任何快速变化。但是对于第二种情况(具有蒸腾的移动壁),在壁表面附近获得最大速度,该壁表面略大于壁速度,1.13m / s。由于喷射所需,由于吸入,速度迅速减小。同样,抽吸力的主导地相容迫使横向速度在第二种情况下实现较低的值,而不是在第一种情况下实现较低的值。在这项工作中详细研究了这些方案背后的流理物理,并在一系列操作条件下讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号