首页> 外文会议>International Conference on Wind Turbine Noise >Small Horizontal Axis Wind Turbine: Aeroacoustic and Aerodynamic Optimization of Airfoil Shape and Blade
【24h】

Small Horizontal Axis Wind Turbine: Aeroacoustic and Aerodynamic Optimization of Airfoil Shape and Blade

机译:小卧式轴风力涡轮机:机身和空气动力学优化翼型形状和刀片

获取原文

摘要

Objective of this contribution is an acoustic and aerodynamic optimization of the full 3D blade geometry for a small horizontal axis wind turbine. Utilizing a refined aero-dynamic blade element momentum (BEM) method and a combination of ROZENBERG's wall pressure and AMIET's trailing edge noise model an evolutionary algorithm is implemented. The validity of ROZENBERG and AMIET models was checked by comparison with recent own measurements of the wall pressure fluctuations and trailing edge sound of a small airfoil section. The optimization is subdivided into two independent steps, (i) the airfoil optimization, and (ii) the optimization of the blade twist angle and chord length distributions. To mimic a fully turbulent flow around the blades of a realistic wind turbine - a worst case scenario - tripping was applied close to the leading edge of all airfoils. The airfoil optimization resulted in novel airfoil shapes. As compared to a chosen benchmark airfoil S834 they promise a better lift-to-drag-ratio and/or lower non-dimensional wall pressure fluctuations in the trailing edge region (WPS). The predictions forecast a reduction by more than 10 dB. Utilizing such a low noise airfoil and optimizing spanwise chord length and twist angle distribution in a second step results in new blade designs. As compared to an existing, non-optimized research turbine with SOMERS airfoil shaped blades the predicted sound power of an optimized turbine is substantially lower without degradation of its power coefficient. A detailed analysis shows that the sound reduction is mainly attributed to the improved airfoil sections. Since the optimization and all results presented here are mainly based on models, future experimental validation is indispensable.
机译:该贡献的目的是用于小横轴风力涡轮机的全3D叶片几何形状的声学和空气动力学优化。利用精致的航空动态刀片元件动量(BEM)方法和Rozenberg的壁压和亚距尾部噪声模型的组合实现了一种进化算法。通过与近期自身测量的壁压波动和小翼翼部分的后缘声音进行比较来检查Rozenberg和AMIET模型的有效性。优化被细分为两个独立的步骤,(i)翼型优化,和(ii)叶片扭曲角度和弦长分布的优化。为了模仿围绕逼真的风力涡轮机的刀片周围的完全湍流 - 最坏的情况跳闸靠近所有翼型的前缘。翼型优化导致新型翼型形状。与所选择的基准翼型S834相比,它们承诺在后缘区域(WPS)中的更好的提升比和/或更低的非尺寸壁压力波动。预测预测减少超过10 dB。利用这种低噪声翼型并在第二步中优化枝条弦长和扭曲角度分布,导致新的刀片设计。与现有的非优化的研究涡轮机相比,具有索翅箔形叶片的预测声功率在不降低其功率系数的情况下显着降低。详细分析表明,声音减少主要归因于改进的翼型部分。自此处提供的优化和所有结果主要基于模型,未来的实验验证是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号